Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là giao điểm các đường trung trực của tam giác. Chứng minh rằng: H, G, O thẳng hàng và HG=2GO
Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là giao điểm các đường trung trực của tam giác. Chứng minh rằng: H, G, O thẳng hàng và HG=2GO
Cho tam giác nhọn ABC , H là trục tâm , G là trọng tâm , O là giao điểm các đường trung trực của tam giác . Chứng minh rằng : H , G , O thẳng hàng và HG = 2GO
Cho tam giác ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của tam giác ABC. Chứng minh H,G,O thẳng hàng và HG= 2GO
Cho \(\Delta ABC\), gọi O là giao điểm 3 đường trung trực, H và G lần lượt là trực tâm và trọng tâm của tam giác. Chứng minh rằng O, G, H thẳng hàng và HG = 2GO.
* Bạn nào có cách giải dựa trên kiến thức 2 tam giác đồng dạng càng tốt ạ :3
Cho tam giác ABC nhọn, H,G,O lần lượt là trực tâm, trọng tâm và giao của 3 đường trung trực của tam giác ABC, M là trung điểm của BC.
a, Chứng minh rằng OM=1/2 AH
b, E,F lần lượt là trung điểm của AG,HG
chứng minh: tam giác EFG = tam giác MOG
c, Chứng minh: H,G,O thẳng hàng
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^
Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D
hình như Quyết kiếm sĩ sai rồi ấy
dòng 9 ấy
Cho tam giác ABC. Gọi H,G,O lần lượt là trực tâm,trọng tâm, và giao điểm của 3 đường trung trực trong tam giác. CHứng minh răng: a) AH bằng 2 lần khoảng cách từ O đến BC. b) 3 điểm H,G,O thẳng hàng và GH = 2GO.
Trọng tâm : điểm giao nhau của 3 đường trung tuyến trong Tam giác
Trực tâm : giao giữa ba đường cao
Đường trung trực : là đường vuông góc với 1 đoạn thẳng tại trung điểm của đoạn thẳng đó.
chắc giờ trả lời là trễ lắm rồi, 2021 cơ mà. Nhưng lỡ thì kệ đi.
Cho tam giác ABC. Gọi H, G, O lần lượt là trực tâm, trọng tâmm và giao điểm của 3 đường trung trực trong tam giác. Chứng minh rằng:
a) AH bằng 2 lần khoảng cách từ O đến BC
b) Ba điểm H, G, O thẳng hàng và GH = 2GO
a) Trên tia đối của tia OC lấy điểm N sao cho ON = OC,ta có : \(OM//BN\)và \(OM=\frac{1}{2}BN\)
Vì OM \(\perp\)BC,AH \(\perp\)BC,do đó OM //AH => NB // AH
Cmtt NA/BH
Xét \(\Delta\)ANB và \(\Delta\)BHA có :
AN = AH(gt)
\(\widehat{A_1}=\widehat{A_2}\)(gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> \(\Delta ANB=\Delta BHA\left(g.c.g\right)\)
=> NB = AH(hai cạnh tương ứng)
Mà \(OM=\frac{1}{2}NB\)
=> AH = 2OM
b) Gọi I là trung điểm của AG,K là trung điểm của HG thì IK//AH => IK//OM,do đó \(\widehat{KIG}=\widehat{OMG}\)(so le trong)
Xét \(\Delta KGI\)và \(\Delta OMG\)có :
GI = GM(gt)
\(\widehat{G_1}=\widehat{G_2}\)(đối đỉnh)
\(\widehat{I}=\widehat{M}\)
=> \(\Delta KGI=\Delta OGM\left(g.c.g\right)\)
=> KG = GO
Từ đó ta có : HG = GO.
Chứng minh:
Các điểm được đặt tên như hình vẽ:
Ta có:
Cơ mà
Lại có:
Nguồn: Mạng
Chỉ chứng minh được câu b thui
Cho tam giác ABC. Gọi H,G,O lần lượt là trực tâm,trọng tâm, và giao điểm của 3 đường trung trực trong tam giác. CHứng minh răng:
a) AH bằng 2 lần khoảng cách từ O đến BC.
b) 3 điểm H,G,O thẳng hàng và GH = 2GO.
bn vẽ hình giùm mk đi, hoặc giải thích thế nào là trực tâm, trọng tâm z?
mik cũng ko bít trực tâm, trọng tâm là j.
Cho tam giác nhọn ABC ( tam giác thường). Họi H,G,O theo thứ tự là trực tâm, trọng tâm, giao điểm ba đường trung trực của tam giác. Tia AG cắt BC ở M. Gọi I là trung điểm của GH. Chứng minh:
a) OM = 1/2 AH
b) tam giác IGK = tam giác MGO
c) Ba điểm H,O,G thẳng hàng
d) GH=2GO
Muốn gải thì phải tự kẻ hình, chứ người ta lười vẽ lắm
Cho tam giác ABC. Gọi H, G, O lần lượt là trực tâm, trọng tâm và giao điểm của 3 đường trung trực. CMR:
a, AH bằng 2 lần khoảng cách từ O đến BC.
b, H, G, O thẳng hàng và HG = 2GO
- Giải thchs hộ tớ trực tâm, trọng tâm là gì với ạ =))) Thanks :)
a,+) Lấy N sao cho : O là trung điểm của CN ; lấy M sao cho : OM là trung trực của BC
\(\implies\) OM là đường trung bình của tam giác CNB
\(\implies\) OM song song với NB ; OM = \(\frac{1}{2}\) NB
Ta có : OM vuông góc với BC \(\implies\) NB vuông góc với BC mà AH vuông góc với BC
\(\implies\) NB song song với AH ( 1 )
+) Lấy S sao cho : OS là trung trực của AC ; mà O là trung điểm của NC
\(\implies\) OS là đường trung bình của tam giác NAC
\(\implies\) OS song song với AN ; OS = \(\frac{1}{2}\) AN
Ta có : OS vuông góc với AC \(\implies\) NA vuông góc với AC mà BH vuông góc với AC
\(\implies\) NA song song với BH ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) NAHB là hình bình hành
\(\implies\) NB = AH ( 3 )
Mà OM = \(\frac{1}{2}\) NB \(\implies\) 2OM = NB ( 4 )
Từ ( 3 ) ; ( 4 )
\(\implies\) AH = 2OM ( đpcm )
b, Ta có : A ; G ; M thẳng hàng ( M là trung điểm của BC ; G là trọng tâm )
GM = \(\frac{1}{3}\) AM \(\implies\) AG = 2GM
Gọi I ; K lần lượt là trung điểm của HG ; AG
\(\implies\) IK là đường trung bình của tam giác HGA
\(\implies\) IK song song với AH ; IK = \(\frac{1}{2}\) AH
+) NB song song OM , mà NB song song với AH
\(\implies\) AH song song với OM
+) AH song song với OM , mà IK song song với AH
\(\implies\) IK song song với OM
\(\implies\) IKG = GMO ( 2 góc so le trong )
+) IK = \(\frac{1}{2}\) AH , mà AH = 2OM
\(\implies\) IK = OM
+) K là trung điểm của AG
\(\implies\) KA = KG = \(\frac{AG}{2}\)
Mà AG = 2GM \(\implies\) KA = KG = GM \(\implies\) KG = GM
+)Xét tam giác KIG và tam giác MOG có :
KG = GM
IKG = GMO ( cmt )
OM = KI
\(\implies\) tam giác KIG = tam giác MOG ( c - g - c )
\(\implies\) IGK = OGM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí 2 góc đối đỉnh
\(\implies\) I , G , O thẳng hàng
\(\implies\) H , G , O thẳng hàng
+) I là trung điểm của HG
\(\implies\) IH = IG = \(\frac{HG}{2}\)
\(\implies\) 2IH = 2IG = HG ( 5 )
+) IG = GO ( tam giác KIG = tam giác MOG )
\(\implies\) 2IG = 2GO ( 6 )
Từ ( 5 ) ; ( 6 )
\(\implies\) HG = 2GO
Trong một tam giác :
+)3 đường trung tuyến đồng quy : trọng tâm
+)3 đường phân giác đồng quy : tâm đường tròn nội tiếp tam giác
+)3 đường cao đồng quy : trực tâm
+)3 đường trung trực đồng quy : tâm đường tròn ngoại tiếp tam giác