Cho tam giác ABC vuông tại A,\(AH\perp BC\)
a)Chứng minh:AH.BC=AB.AC
b)Gọi M,N là trung điểm của BC,AB.Qua B kẻ đường thẳng vuông góc với BC cắt MN tại I.Chứng minh:\(IB^2=IM.IN\)
c)CI cắt AH tại O.Chứng minh O là trung điểm AH
Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC.
a) Chứng minh: ∆ A B H = ∆ A C H . Từ đó suy ra AH vuông góc với BC.
b) Tính độ dài AH nếu BC = 4 cm, AB = 6 cm.
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. Chứng minh A là trung điểm của đoạn thẳng MN.
e) Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH = IE = IF
f) Chứng minh: IC vuông góc với MC.
Cho tam giác ABC vuông tại A, vẽ đường cao AH
a)Chứng minh tam giác ABH đồng dạng tam giác ABC. Suy ra AB BH.BC
b) Gọi M là trung điểm BC và N là trung điểm AB.
Chứng minh: MN vuông góc AB và BN.BA = BH.BM
c) Đường thẳng vuông góc BC vẽ từ B cắt đường thằng MN tại I; CI cắt AH tại 0,
Chứng minh: ON song song BC.
Bài 4: Cho tam giác ABC vuông tại A đường cao AH .
a) Chứng minh tam giác AHB đồng dạng tam giác ABC
b) Gọi M , N lần lượt là trung điểm của BC và AB . Đường vuông góc BC kẻ từ B cắt MN tại I . Chứng minh
c) IC cắt AH tại O . Chứng minh O là trung điểm AH
d) Gọi K là giao điểm của CA và BI . Tính độ dài BK ,biết AB = 15 cm , AC = 20 cm .
a. xét tam giác AHB và tam giác ABC có:
góc H= góc A=90o
góc B chung
-> tam giác AHB~tam giác ABC (g.g)
b. thiếu đề rồi bạn.
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường thẳng vuông góc với BC cắt AB ở M,từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a)Chứng minh MD=NE
b)MN cắt DE ở I.Chứng minh I là trung điểm của DE
c)Từ C kẻ đường thẳng vuông góc với AC,từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O.Chứng minh AO là đường trung trực của BC
Bài 1:Cho tam giác ABC cân tại A;AB>BC,H là trung điểm của BC
a,Chưng minh tam giac ABH=tam giác ACH từ đó suy ra AH vuông góc với BC tại H
b,Tính độ dài AH biết BC=4cm;AB=6cm
c,Tia phân giác góc B cắt AH tại I.Chứng minh tam giac BIC là tam giác cân
d,Đường thăng đi qua A và song song BC cắt tia BI;CI tại M và N.Chứng minh A là trung điểm của MN
e,Kẻ IE vuông góc vs AB tại E,IF vuông góc với AC tại F.Chứng minh IH=IE=IF
f,Chứng minh IC vuông góc với Mc
Bài toán 1. Cho tam giác ABC, trung tuyến AM, phân giác AN. Từ N vẽ đường thẳng vuông góc với AN cắt AB, AM tại hai điểm P và Q. Từ Q vẽ đường thẳng vuông góc với AB cắt AN tại O. Chứng minh rằng QO\(\perp\)BC
Bài toán 2. Cho\(\Delta\)ABC. Trung tuyến BM và đường phân giác CD cắt nhau tại I thỏa mãn IB = IC. Từ A kẻ AH\(\perp\)BC. Chứng minh rằng IM = IH.
Bài toán 3. Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, G là điểm trên cạnh AB sao cho GB = 2GA. Các đường thẳng GM và CA cắt nhau tại D. Đường thẳng qua M vuông góc với CG tại E và cắt AC tại K. Gọi P là giao điểm của DE và GK.Chứng minh rằng:
a. DE = BC
b. PG = PE
Bài toán 1: (Hình a)
Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.
Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR
Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)
\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)
Dễ thấy NS là đường trung bình của \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)
Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)
Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ
=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).
Bài toán 2: (Hình b)
Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)
=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC
Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI
=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).
Bài toán 3: (Hình c)
a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.
Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC
Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD
Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)
=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng
=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM
Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E
=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)
=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).
b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE
Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).
Cho tam giác ABC cân tại A, AB>BC, H là trung điểm của BC
a, Chứng minh: tam giác ABH = tam giác ACH. Từ đó suy ra AH vuông góc với BC
b, Tính độ dài AH nếu BC=4cm, AB=6m
c, Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân
d, Đường thẳng đi qua A và song song với BC cắt tua BI, CI lần lượt tại M ,N. Chứng minh A là trung điểm của đoạn thẳng MN
e, Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH=IE=IF
f, Chứng minh: IC vuông góc với MC ( vẽ hình+ ghi giả thiết )
Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC
a) Chứng minh: ΔABH = ΔACH. Từ đó suy ra AH vuông góc với BC
b) Tính độ dài AH nếu BC = 4cm; AB = 6cm
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân
d) Đường thẳng đi qua a song song với BC cắt BI và CI tại M và N. Chứng minh A là trung điểm của MN
đề có sai không zợ
nói tg ABC cân mà AB>AC
a)\(\text{ Xét }\Delta ABH\)\(\text{và }\Delta ACH\)\(\text{có}\)
\(AB=AC\)
\(\widehat{ABH}=\widehat{ACH}\left(\Delta\text{ABC cân}\right)\)
\(BH=CH\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)
\(\text{Mà }\widehat{AHB}+\widehat{AHC}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow AH\perp BC\)
b) \(\text{Có }BH=\frac{BC}{2}\left(gt\right)\)
\(\text{Mà BC = 4 ( GT )}\)
\(\Rightarrow BH=4cm\)
\(\text{Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :}\)
\(\text{AH^2 + BH^2 = AB^2}\)
\(\Rightarrow AH^2+2^2=6^2\)
\(\text{=> AH^2 = 32}\Rightarrow AH^2=32\)\(\Rightarrow AH^2=32\)
\(\Rightarrow AH=\sqrt{32}\)
\(\text{Vậy }AH=\sqrt{32}\)
Cho tam giác ABC có AB=15cm, AC=20cm, BC=25cm
a) Chứng minh: Tam giác ABC vuông
b) Vẽ AH vuông góc với BC tại H.Chứng minh: Tam giác ACH đồng dạng với tam giác ABC và tính độ dài HC
c) Gọi M và N lần lượt là trung điểm của AB,BC.Qua B vẽ đường thẳng vuông góc với Bc và cắt MN tại I.Chứng minh: MN vuông góc với AB; BM^2=MN.MI
d) Gọi K là giao điểm của AH và MN.Chứng minh: tam giác AHB đồng dạng với tam giác HNK
e) Chứng minh: Tam giác KMH đồng dạng với tam giác ANK
f) Gọi O là giao điểm của CI và AH.Chứng minh: BH=2.MO