Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Đình Lực
Xem chi tiết
Nguyễn Linh Chi
29 tháng 5 2020 lúc 22:20

\(\hept{\begin{cases}x^2+8=xy^2+2x\left(1\right)\\y^2+8=x^2y+2y\left(2\right)\end{cases}}\)

Xét: \(x^2+8=xy^2+2x\)

<=> \(x\left(y^2+2\right)=x^2+8\ge8>0\)mà \(y^2+2>0\) với mọi x; y 

=> \(x>0\)tương tự \(y>0\)(3) 

Xét \(x^2+8=xy^2+2x\)

<=> \(y^2+2=x+\frac{8}{x}\ge2\sqrt{8}\)<=> \(y^2\ge2\sqrt{8}-2\)

<=> \(\orbr{\begin{cases}y\ge\sqrt{2\sqrt{8}-2}\\y\le-\sqrt{2\sqrt{8}-2}\end{cases}}\)tương tự \(\orbr{\begin{cases}x\ge\sqrt{2\sqrt{8}-2}\\x\le-\sqrt{2\sqrt{8}-2}\end{cases}}\)(4) 

Từ (3) và (4) => \(x;y\ge\sqrt{2\sqrt{8}-2}\)(@@)

Lấy (1) - ( 2) ta có: \(x^2-y^2=xy^2-x^2y+2x-2y\)

<=> \(\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)-2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x+y+xy-2\right)=0\)(5)

Với \(x;y\ge\sqrt{2\sqrt{8}-2}\) ta có: \(x+y+xy-2>0\)

Do đó: (5) <=> x = y 

Thế vào (1) ta có: \(x^3-x^2+2x-8=0\Leftrightarrow x=2\)thỏa mãn (@@) 

Vậy:...

Khách vãng lai đã xóa
Nguyễn Xuân Đình Lực
Xem chi tiết

\(\hept{\begin{cases}x^2+8=xy^2+2x\left(1\right)\\y^2+8=x^2y+2y\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\left(x-y\right)\left(x+y\right)=-xy\left(x-y\right)+2\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+xy-2\right)=0\)

Đến đây dễ r :)))

Khách vãng lai đã xóa
Cố gắng hơn nữa
Xem chi tiết
nguyentranquang
Xem chi tiết
Tran Le Khanh Linh
5 tháng 4 2020 lúc 10:55

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

Khách vãng lai đã xóa
Kurosaki Akatsu
Xem chi tiết
alibaba nguyễn
10 tháng 7 2017 lúc 15:14

\(\hept{\begin{cases}x^2y+xy^2+x+y=9\\xy+2x+2y=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy\left(x+y\right)+x+y=9\\xy+2x+2y=8\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P.S+S=9\\P+2S=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S\left(8-2S\right)+S=9\\P=8-2S\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2S^2-9S+9=0\\P=8-2S\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S=\frac{3}{2}\\P=5\end{cases}}\)hoặc \(\Rightarrow\hept{\begin{cases}S=3\\P=2\end{cases}}\)

Thế vô giải tiếp.

Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa
Đinh Thị Hải Thanh
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Nguyễn Tất Đạt
8 tháng 2 2019 lúc 1:01

\(\hept{\begin{cases}x^2+xy+2y=2y^2+2x\left(1\right)\\y\sqrt{x-y+1}+x=2\left(2\right)\end{cases}}\)(ĐKXĐ: x,y thuộc R, y < x+1)

Pt (1) \(\Leftrightarrow\left(x^2-y^2\right)+\left(xy-y^2\right)-\left(2x-2y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)-2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2-2y\end{cases}}\)

+) Thế \(x=y\) vào pt (2), ta có: \(y\sqrt{y-y+1}+y=2\Leftrightarrow2y=2\Leftrightarrow y=1\Rightarrow\left(x;y\right)=\left(1;1\right)\)

+) Thế \(x=2-2y\) vào pt (2), ta có: \(y\sqrt{2-2y-y+1}+2-2y=2\)

\(\Leftrightarrow y\sqrt{3-3y}=2y\Leftrightarrow y^2\left(3-3y\right)=4y^2\Leftrightarrow3y^3=-y^2\) (3)

Nếu \(y=0\Rightarrow x=2\)(t/m ĐKXĐ) => \(\left(x;y\right)=\left(2;0\right)\)

Nếu \(y\ne0\), chia cả hai vế của pt (3) cho y2, ta được:

\(3y=-1\Leftrightarrow y=-\frac{1}{3}\Rightarrow x=\frac{8}{3}\)(t/m ĐKXĐ) => \(\left(x;y\right)=\left(\frac{8}{3};-\frac{1}{3}\right)\)

Vậy tập nghiệm của hpt cho là \(S=\left\{\left(2;0\right);\left(\frac{8}{3};-\frac{1}{3}\right)\right\}.\)

Nguyễn Tất Đạt
8 tháng 2 2019 lúc 1:03

À, thiếu cặp (1;1) bạn bổ sung vào nhé.

olm
Xem chi tiết
Vũ Đức Minh
15 tháng 3 2020 lúc 20:05

hãy dùng cái đầu bạn nhé :))))

Khách vãng lai đã xóa

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

Khách vãng lai đã xóa
Nguyễn Tiến Đức Anh
10 tháng 7 2021 lúc 8:52

109ubbbbbbbhy3333333333333

Khách vãng lai đã xóa