Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Văn Chiến
Xem chi tiết
Chủ acc bị dính lời nguy...
30 tháng 5 2020 lúc 16:17

A B C D E M N H

a) Xét \(\Delta ABC\)\(\Delta ADE\):

AB=AD(gt)

\(\widehat{BAC}=\widehat{DAE}=90^o\)

AC=AE(gt)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

=> BC=DE ( 2 cạnh tương ứng)

=> Đpcm

b) Ta có \(\Delta ABD\)vuông cân tại A

=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)

\(\Delta AEC\)vuông cân tại A

=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)

=> \(\widehat{BDA}=\widehat{ECA}=45^o\)

Mà 2 góc này ở vị trí so le trong

=> BD//CE

=> Đpcm

c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM

Gọi giao điể của NA và MC là I

Xét \(\Delta NMC\)có:

\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)

Mà 2 đường cao này cắt nhau tại A

=> A là trực tâm của \(\Delta MNC\)

=> \(CA\perp NM\)

=> Đpcm

d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)

=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)

=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)

=> \(\widehat{AED}=\widehat{MAE}\)

=> \(\Delta MAE\)cân tại M

=> MA=ME (1)

Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)

=> \(\widehat{ADE}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)

=> \(\widehat{ADE}=\widehat{DAM}\)

=> \(\Delta DAM\)cân tại M

=> MD=MA (2)

Từ (1) và (2)

=> MA=MD=ME

=> \(MA=\frac{1}{2}DE\)

=> Đpcm

P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>

Khách vãng lai đã xóa
Hàn Thiên Băng
Xem chi tiết
Đỗ Thị Dung
9 tháng 5 2019 lúc 15:03

đề bài có thiếu ko bn?

Doanthaovy
Xem chi tiết
Nguyen Hoang Minh
Xem chi tiết
Nguyễn Thị Ngọc An
Xem chi tiết
Phan M
Xem chi tiết
Nguyễn Thảo Trang
12 tháng 11 2021 lúc 13:43

a) Xét tam giác ABC và ADE vuông tại A

+) AB=AD

+) AC=AE

=> tam giác ABC bằng tam giác ADE

=> BC= DE

b)

TA có tam giác ABD và ACE đều vuông cân tại A

=> góc ABD = ADB= ACE=AEC = 45

=> BD//CE (có 2 góc so le trong bằng nhau)

c) Gọi đường NA cắt MC tại I

Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A

=> A là trực tâm tam giác NMC

=> CA là đường cao thứ ba

=> CA ⊥ MN

d)

Ta chứng minh được tam giác ADM và AME cân tại M

Suy ra MD=MA và MA=ME
=> MD=ME=MA

=> MA=DE/2

 

 

 

image 
Hà Minh Huyền
Xem chi tiết
Nguyen Hoang Minh
Xem chi tiết
Khánh Duyên
Xem chi tiết