Chứng minh phân số \(\frac{n+1}{n+2}\)tối giản với \(n\in N\)
Chứng minh rằng phân số \(\frac{n^2+n-1}{n^2+n+1}\)là tối giản với mọi n \(\in\)N
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> \(n^2+n-1⋮d\)
\(n^2+n+1⋮d\)
=> \(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)
=> \(2⋮d\)
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> \(d\ne2\)
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
Gọi d=ƯCLN(n2+n-1 ; n2+n+1)
=> n^2+n-1⋮d
n^2+n+1⋮d
=> (n2+n+1)−(n2+n−1)⋮d
=> 2⋮d
Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ
=> d khác 2
=> d=1
Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản
Chứng minh phân số \(\frac{24n+1}{60n+2}\)tối giản với mọi n \(\in\)N*
Chứng minh rằng phân số \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản với \(n\in N\)
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Chứng minh rằng với mọi \(n\in N\)thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản
ta có n4+3n2+1=(n3+2n)n+n2+1
n3+2n=(n2+1)n+n
n2+1=n.n+1
n=1.n
vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)
Chứng minh phân số sau tối giản :
\(\frac{n^3+2n}{n^4+3n^2+1}\)( n \(\in\)N )
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
Bài 1*:Tìm \(n\in N\)để phân số \(\frac{5n+6}{8n+7}\)không tối giản
Bài 2*: Tìm số tự nhiên n nhỏ nhất để các phân số sau là tối giản:\(\frac{7}{n+9};\frac{8}{n+10};...;\frac{31}{n+33}\)
Bài 3*: Cho phân số\(\frac{p}{q}\) là tối giản. Chứng minh phân số\(\frac{p+q}{q}\) cũng tối giản
Chứng minh phân số \(\frac{2n+1}{5n+2}\)là một phân số tối giản, với n \(\in\) N
Gọi d là UCLN(2n+1;5n+2),ta có:
=>[5(2n+1)]-[2(5n+2)] chia hết d
=>1 chia hết cho d
<=>d=1
=> phân số trên tối giản
Chứng minh phân số \(\frac{2n+1}{5n+2}\)là một phân số tối giản, với n \(\in\) N
Gọi d là ước chung của 2n + 1 và 5n + 2
Ta có: 2n + 1 chia hết cho d => 5.(2n + 1) chia hết cho d => 10n + 5 chia hết cho d
5n + 2 chia hết cho d => 2.(5n + 2) chia hết cho d => 10n + 4 chia hết cho d
=> (10n + 5) - (10n + 4) chia hết cho d
=> 10n + 5 - 10n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy \(\frac{2n+1}{5n+2}\)là một phân số tối giản, với n \(\in\) N
Gọi a là UCLN( 2n+1,5n+2)
ta có 2n+1 chia hết cho a=> 5(2n+1) chia hết cho a hay 10n + 5 chia hết a
5n+2 chia hết cho a=> 2(5n+2) chia hết cho a hay 10n + 4 chia hết a
10n + 5 chia hết a
10n + 4 chia hết a=>
(10n + 5 ) -( 10n + 4 ) chia hết a hay 1chia hết a=> a=1
Vậy ps đó là 1 ps tối giản với n thuộc N
k nha
Bài 1 : Chứng tỏ rằng với mọi số nguyên n, phân số \(\frac{3n-5}{3-2n}\)là phân số tối giản.
Bài 2 : Cho n \(\in\)N*. Biết n - 10, n+10, n+ 60 đều là các số nguyên tố. Chứng minh rằng n + 90 cũng là số nguyên tố.
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~