\(\frac{3}{x-2}=25\%\)
Tìm x \(1-\left(x\%+x:50+\frac{\frac{3}{2}-\frac{3}{7}-\frac{3}{13}}{\frac{25}{2}-\frac{25}{7}-\frac{25}{13}}\times x\right)=0\)
TÌM x:
a,(5-x)+12=-25
b,12-4.(x-2)=-4
c,-15-/3-x/=-19
d,\(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2.x\right)=-4\)
e,\(\left(x+\frac{1}{5}\right)m\text{ũ}2+\frac{17}{25}=\frac{26}{25}\)\
f,\(\frac{x}{3}+\frac{x}{7}=\frac{1}{7}+\frac{3}{14}\)
mk sắp phải đi học rồi các bạn giúp mình với có đc ko mk nhớ sẽ đền đáp công ơn của bạn
a) (5 - x) +12 = -25
<-> 5 - x + 12 = -25
<-> 17 - x = - 25
<-> x = 42
b) 12 - 4(x - 2) = -4
<-> 12 - 4x + 8 = -4
<-> 20 - 4x = -4
<-> 4x = 24
<-> x = 6
a) (5 - x) + 12 = -25
<=> -x = -25 - 12 - 5
<=> -x = -42
<=> x = 42
b) 12 - 4(x - 2) = -4
<=> 12 - 4x + 8 = -4
<=> -4x = -4 - 8 - 12
<=> -4x = -24
<=> x = 6
c) -15 - |3 - x| = -19
<=> -|3 - x| = -4
<=> 3 - x = 4 hoặc 3 - x = -4
<=> x = -1 hoặc x = 7
Gỉai phương trình \(\frac{x+2}{x^2-8x+15}+\frac{x+1}{x^2-10x+25}=\frac{2x+3}{x^2-10x+25}\)
\(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
ĐKXĐ:...
\(\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}{\left(9-x\right)}\)
\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)
1 . \(\frac{x-1}{12}-\frac{2x-12}{14}=\frac{3x-14}{25}-\frac{4x-25}{27}\)
2 . \(\frac{3}{x-1}+\frac{4}{x-2}=\frac{5}{x-3}+\frac{6}{x-4}\)
3 . \(\frac{2x-1}{2}+\frac{2x+1}{3}=\frac{2x+7}{6}+\frac{2x+9}{7}\)
4 . \(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
( 2746 - x ) - 258 = 1360
25 × x - x = 14040 : 45
x : 1/2 + x : 1/7 + x : 1/3 = 864
( 5915 + 3550 : 25 ) - 76 × 25
7 × 2/3 - 2/5 : 1/2 - 2/3
1\(\frac{2}{3}\): \(\frac{2}{3}\)- \(\frac{3}{4}\)× \(\frac{2}{3}\)+ 5\(\frac{3}{7}\)
1\(\frac{1}{3}\)+ 1\(\frac{1}{4}\): 1 \(\frac{1}{2}\)+ 2\(\frac{3}{4}\)× 2\(\frac{2}{3}\)
\(\left(2746-x\right)-258=1360\)
\(2746-x=1360+258\)
\(2746-x=1618\)
\(x=2746-1618\Rightarrow x=1128\)
\((x+\frac{1}{2})\times(\frac{2}{3}-2x)=0\)
\(\left\{x+\frac{1}{5}\right\}^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{2}\right)\cdot\left(\frac{2}{3}-2x\right)=0\)
TH1 : \(\Rightarrow x+\frac{1}{2}=0\)
\(x=0-\frac{1}{2}\)
\(x=\frac{-1}{2}\)
TH2 : \(\Rightarrow\frac{2}{3}-2x=0\)
\(2x=0+\frac{2}{3}=\frac{2}{3}\)
\(x=\frac{2}{3}\div2=\frac{1}{3}\)
\(\Rightarrow x=\frac{-1}{2};\frac{1}{3}\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\left(x+\frac{1}{5}\right)^2=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
\(x=\frac{3}{5}^2-\frac{1}{5}^2\)
\(x=\frac{2}{5}\)
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16\frac{2}{3}\right)=0\)
b) \(\left(\frac{x}{3}-5\frac{1}{4}\right)^2-\frac{-2}{5}=1\frac{1}{25}\)
c) \(\frac{17-x}{12}=\frac{3}{17-x}\)
d) \(1\frac{1}{3}-25\%\left(x-\frac{8}{3}\right)+2x=1,6:\frac{3}{5}\)
Rút gọn
\(\left(\frac{x-5\sqrt{x}}{25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
ĐKXĐ :\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\sqrt{x}\ne-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
- Ta có : \(\left(\frac{x-5\sqrt{x}}{25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right):\left(\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{x-5\sqrt{x}-25}{25}\right)\left(\frac{\sqrt{x}+5}{-\sqrt{x}-3}\right)\)
\(=\frac{\left(x-5\sqrt{x}-25\right)\left(\sqrt{x}+5\right)}{-25\left(\sqrt{x}+3\right)}=\frac{x\sqrt{x}+5x-5x-25\sqrt{x}-25\sqrt{x}-125}{-25\left(\sqrt{x}+3\right)}\)
\(=\frac{x\sqrt{x}-125-50\sqrt{x}}{-25\left(\sqrt{x}+3\right)}\)
chứng minh x5+x+1=0 có nghiệm duy nhất là
x= \(\frac{1}{3}\)(\(1-\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
Ta có: \(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Lại có: \(x^5+x+1=0\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^3-x^2+1\right)=0\)
\(\Rightarrow x^3-x^2+1=0\) (vì \(x^2+x+1>0\))
Đặt \(m=\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
\(\Rightarrow m^3=25+3\sqrt[3]{\frac{25+\sqrt{621}}{2}.\frac{25-\sqrt{621}}{2}}.m\)
\(m^3=25+3m\) (1)
\(n=\frac{1}{3}\left(1-m\right)\Leftrightarrow m=1-3n\) (2)
Từ (1) và (2) suy ra:
\(\left(1-n\right)^3=25+\left(1-3n\right)\)
\(\Leftrightarrow1-9n+27n^2-27n^3=25+3-9n\)
\(\Leftrightarrow27n^3-27n^2+27=0\)
\(\Leftrightarrow n^3-n^2+1=0\)
Vậy \(x=n\) là nghiệm của phương trình \(x^3-x^2+1=0\)
\(\Rightarrow x=n\) cũng là nghiệm của phương trình \(x^5+x+1=0\)
* Nếu \(x>n\) thì \(x^5+x+1>n^5+n+1=0\)
\(\Rightarrow\) Với mọi x > n ko là nghiệm của phương trình.
* Nếu \(x< n\) thì \(x^5+x+1< n^5+n+1=0\)
\(\Rightarrow\) Với mọi x < n ko là nghiệm của phương trình.
(Chúc bạn học giỏi và tíck cho mìk vs nhoa!)