Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Phạm Thị Thùy Linh
31 tháng 5 2020 lúc 14:06

\(C=\frac{x^2+5x+8}{x^2+2x+1}=\frac{x^2+2x+1+3x+3+4}{x^2+2x+1}\)

\(=\frac{\left(x+1\right)^2+3\left(x+1\right)+4}{\left(x+1\right)^2}=1+\frac{3}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow C=1+3a+4a^2\)

\(\Rightarrow C=4\left(a^2+\frac{3}{4}a+\frac{1}{4}\right)=4\left(a^2+2.\frac{3}{8}+\frac{9}{64}-\frac{9}{64}+\frac{1}{4}\right)\)

\(=4\left(a+\frac{3}{8}\right)^2+\frac{7}{16}\)

\(\Rightarrow C_{min}=\frac{7}{16}\Leftrightarrow\)\(a=-\frac{3}{8}\Leftrightarrow\frac{1}{x+1}=-\frac{3}{8}\)

\(\Rightarrow3\left(x+1\right)=-8\Rightarrow x=-\frac{11}{3}\)

Vậy \(C_{min}=\frac{16}{7}\Leftrightarrow x=-\frac{11}{3}\)

Khách vãng lai đã xóa
Quyen Nguyen
Xem chi tiết
o0o I am a studious pers...
2 tháng 8 2016 lúc 16:34

\(C=5+3\left(2x-1\right)^2\)

\(=5+3\left(3x-1\right)^2\ge5\)

\(Min=5\Leftrightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

Quyen Nguyen
Xem chi tiết
Trần Việt Linh
2 tháng 8 2016 lúc 16:48

\(A=5+3\left(2x-1\right)^2\)

Vì \(\left(2x-1\right)^2\ge0\) với mọi x

=>\(5+\left(2x-1\right)^2\ge5\)

Vậy GTNN của A là 5 khi x=1/2

Quyen Nguyen
2 tháng 8 2016 lúc 16:51

ai làm được các bài nữa ko ạ. mình cần gấp lắm

Quyen Nguyen
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
Lê Đại Nghĩa
Xem chi tiết
Phan Thành Tiến
28 tháng 3 2018 lúc 21:19

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

Vinh Nguyen
28 tháng 3 2018 lúc 20:24

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

ღHàn Thiên Băng ღ
Xem chi tiết
luuthianhhuyen
3 tháng 12 2018 lúc 15:29

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

Nguyệt
3 tháng 12 2018 lúc 16:35

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

kudo shinichi
3 tháng 12 2018 lúc 16:37

Tự trình bày nhé. Gợi ý thôi

\(B=5-8x-x^2\)

\(B=-\left(x^2+2.x.4+4^2\right)+21\)

\(B=-\left(x+4\right)^2+21\le21\forall x\)

\(C=5x-x^2=-\left(x^2-2.x.2,5+2,5^2\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\forall x\)

\(D=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Huyền Anh Lê
Xem chi tiết
Diệu Huyền
10 tháng 1 2020 lúc 22:21

Phân thức đại số

Khách vãng lai đã xóa
Ngô Linh
Xem chi tiết
_Guiltykamikk_
23 tháng 5 2018 lúc 17:14

\(A=x^2-2x+10\)

\(A=\left(x^2-2x+1\right)+9\)

\(A=\left(x-1\right)^2+9\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A\ge9\)

Dấu "=" xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy Min A = 9 khi x = 1

_Guiltykamikk_
23 tháng 5 2018 lúc 17:17

\(B=x^2-5x-7\)

\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow B\ge-\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)

_Guiltykamikk_
23 tháng 5 2018 lúc 17:20

\(C=3x^2+3x-5\)

\(3C=9x^2+9x-15\)

\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)

\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(3x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow3C\ge-\frac{69}{4}\)

\(\Leftrightarrow C\ge-\frac{23}{4}\)

Dấu "=" xảy ra khi :

\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy ...