Gỉai phương trình :
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
Gỉai hệ phương trình
1) \(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\end{matrix}\right.\)
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\frac{1}{\left(x+1\right)^2-1}+\frac{1}{\left(y+1\right)^2-1}=\frac{2}{3}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\frac{1}{a^2-1}+\frac{1}{\frac{16}{a^2}-1}=\frac{2}{3}\)
\(\Rightarrow a^4-8a^2+16=0\Rightarrow a^2=4\Rightarrow a=\pm2\Rightarrow x=...\)
b/ ĐKXĐ: ...
\(\Rightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\)
\(\Rightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\sqrt{2-\frac{1}{y}}+xy\sqrt{2-\frac{1}{x}}}=0\right)\)
\(\Rightarrow\sqrt{y}=\sqrt{x}\Rightarrow y=x\) (ngoặc phía sau luôn dương)
Thay vào pt đầu:
\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)
Mặt khác áp dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Rightarrow\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}\le\sqrt{2\left(\frac{1}{x}+2-\frac{1}{x}\right)}=2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\frac{1}{\sqrt{x}}=\sqrt{2-\frac{1}{x}}\Rightarrow\frac{1}{x}=2-\frac{1}{x}\Rightarrow x=1\Rightarrow y=1\)
Giải phương trình:
\(\frac{2\left(x-\sqrt{3}\right)\left(x-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
1) Tính tổng \(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
2) Giải phương trình sau : \(\left(x^2-x+1\right)^4-\left(x^2+1\right)\left(x^2-x+1\right)^2+x^2=0\)
\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)
\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)
Giải phương trình sau
a,\(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x+2\right)\sqrt{\frac{x-1}{x-2}}=3\)
b,\(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)
c, \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=-2\)
Sorry nha nhưng em mới học lớp 7 thôi à ~~
Giải hệ phương trình :
\(\hept{\begin{cases}2x^2\left(4x+1\right)+2y^2\left(2y+1\right)=y+32\\x^2+y^2-x+y=\frac{1}{2}\end{cases}}\)
Giải phương trình :
\(\frac{\sqrt{x^2-x+2}}{1+\sqrt{-x^2+x+2}}-\frac{\sqrt{x^2+x}}{1+\sqrt{-x^2-x+4}}=x^2-1\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
Giải phương trình:
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}\)\(=\frac{1}{3x\left(x^2+2\right)}\)\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)\(=4\left(2-\sqrt{3}\right)\)Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)