\(Q=\frac{x+\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
a. Rút gọn Q
b. So sánh Q với \(\frac{1}{4}\)
\(A:\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\)(Rút Gọn)
B:\(M=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x+1}}{x-2\sqrt{x+1}}\)(rút gọn rồi so sánh giá trị M với 1)
B=\(\left(\frac{\sqrt{x+1}}{\sqrt{x-1}}+\frac{1-\sqrt{x}}{\sqrt{x+1}}\right):\left(\frac{\sqrt{x+1}}{\sqrt{x-1}}+\frac{\sqrt{x}}{\sqrt{x+1}}+\frac{\sqrt{x}}{1-x}\right)\)
a. Tìm điều kiện xác định,rút gọn B
b. tính B với x= 1- \(\frac{\sqrt{3}}{2}\)
c. so sánh B với 2
Cho B=\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
a) Rút gọn
b) So sánh B và \(\frac{1}{B}\)
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
a)rút gọn
b) tìm x biết \(A\) bằng \(\frac{5}{\sqrt{x}}\)
c) so sánh \(A\) vs \(\frac{1}{3}\)
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\))
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\frac{5}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)
\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)
\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\))
\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))
Do đó \(A< \frac{1}{3}\).
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
\(P=1:
\left(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\right)\)
Rút gọn P
So sánh p với 3
a) \(ĐKXĐ:\) \(x\ne1,x>0\)
\(P=1:\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\right)\)
\(=1:\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=1:\left[\frac{x+2+x-1-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\)
\(=1:\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Vậy \(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\left(x\ne1,x>0\right)\)
b) Xét hiệu \(P-3=\frac{x+\sqrt{x}+1}{\sqrt{x}}-3\)
\(=\frac{x+\sqrt{x}+1-3\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\) \(\forall x>0,x\ne1\)
Do đó : \(P>3\)
a) Rút gọn P
b) Tìm x để P=9/2 ( ai giúp tớ câu này nhé! )
c) So sánh P với 4
P= \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
a)tìm ĐKXĐ
b)Rút gọn
c) So sánh với 1
\(1:\left(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{\sqrt{x}-1}{x-1}\right)\)
\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
a) Rút gọn M
b) Tìm x để \(T=\frac{9}{2}\)
c) So sánh T với 4
ai giúp mk ikk
\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)