Nếu B không chia hết cho 24 mà B là số lớn nhất có 5 chữ số và tổng các chữ số của B là 21.Tìm b
nếu b không chia hết cho 24 và b là số lớn nhất có 5 chữ số có tổng các chữ số bằng 21 thì b bằng......?
số lớn nhất có 5 chữ số không chia hết cho 24 có tổng các chữ số là 21
Ta có số có 2018 chữ số lớn nhất là 999....99 (2018 chữ số 9)
=> A lỡn nhất là 2018 x 9 = 18162
=> B lớn nhất là 1 + 8 + 1 + 6 + 2 = 18
=> C lớn nhất là 1 + 8 = 9
Ta có 3 x 9 + 2 = 29 mà 29 là số nguyên tố nên không tồn tại số như vậy
Một số có 5 chữ số không chia hết cho 24 và tổng các chữ số của số đó là 21. Tìm số đó?
1)cho a thuộc n tìm số dư của phép chia a mẫu 2 cho 3 b) có số chính phương nào mà tổng các chữ số của nó =23456 k
2)Viết các số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Số M có chia hết cho 3 và 9 không?
3)chứng tỏ rằng abcd-(a+b+c+d) chia hết cho 9
4)tổng các chữ số của 3 mũ 100 là a tổng các chữ số cảu a là b tổng các chữ số của b là c tính c
5)tìm các chữ số a,b số cho 52ab chia hết cho 9 và chia 5 dư 2
giải rõ dùm mình nha!!!!
a) Tìm số lẻ lớn nhất có bốn chữ số có tổng bốn chữ số bằng 19 và chia hết cho 5.
b) Tìm số chẵn lớn nhất có bốn chữ số có tổng các chữ số bằng 19 và chia hết cho 5
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Vì số đó chia hết cho 5 nên \(d\) = 0; 5
Vì đó là số lẻ nên \(d\) = 5
Tổng các chữ số còn lại là: 19 - 5 = 14
Để được số lớn nhất thì chữ số hàng càng cao phải càng lớn
Từ lập luận trên ta chọn \(a\) là 9
Tổng các chữ số còn lại là: 14 - 9 = 5
chọn \(b\) là \(5\) thì \(c\) = 5 - 5 = 0
Thay \(a=\) 9; \(b\) = 5; \(c\) = 0; \(d\) = 5 vào biểu thức \(\overline{abcd}\) ta được
\(\overline{abcd}\) = 9505
Vậy số lẻ lớn nhất có 4 chữ số mà tổng các chữ số bằng 19 và chia hết cho 5 là 9505
b, Số có 4 chữ số có dạng: \(\overline{abcd}\)
Vì số đó chia hết cho 5 nên \(d\) = 0; 5
vì đó là số chẵn nên \(d\) = 0
Tổng các chữ số còn lại là 19 - 0 = 19
Để được số lớn nhất thì chữ số hàng càng cao phải càng lớn
Từ lập luận trên ta chọn \(a\) = 9
Tổng các chữ số còn lại là: 19 - 9 = 10
Chọn \(b\) = 9 thì c = 10 - 9 = 1
Thay \(a=9\); \(b\) = 9; \(c\) = 1; \(d\) = 0 vào biểu thức: \(\overline{abcd}\) ta có:
\(\overline{abcd}\) = 9910
Vậy số chãn lớn nhất có 4 chữ số mà tổng các chữ số bằng 19 và chia hết cho 5 là : 9910
Đáp số a, 9505
b, 9910
a,Tìm số bé nhất mà tổng các chữ số bằng 29.
b, Tìm số lớn nhất có ba chữ số khác nhau mà số đó chia hết cho 5
A) số bé nhất ta có là:2999
B)số lớn nhất có ba chữ số khác nhau chia hết cho 5 là:995
Bài 1:
a) Tìm hai số nguyên a , b biết : a > 0 và (a + 2) . (b – 3) = 5.
b) Tính tổng A + b biết rằng A là tổng các số nguyên âm lẻ có hai chữ số, B là tổng các số nguyên âm chẵn có hai chữ số.
Bài 2:
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.
sorry,em mới có học lớp 5
HÌ HÌ
Bài 1 :
b ) Vì A là tổng các số nguyên âm lẻ có hai chữ số .
\(\Rightarrow\)A = - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 )
Vì b tổng các số nguyên dương chẵn có hai chữ số .
\(\Rightarrow\) B = 10 + 12 + 14 + ... + 98
Vậy tổng A + b là :
\(\Rightarrow\) A + b = [ - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 ) ] + ( 10 + 12 + 14 + ... + 98 )
\(\Rightarrow\) A + b = ( 10 - 11 ) + ( 12 − 13 ) + ( 14 - 15 ) + ... + ( 98 - 99 )
\(\Rightarrow\) A + b = - 1 + ( - 1 ) + ( - 1 ) + . . + ( - 1 ) ( 50 số hạng )
\(\Rightarrow\) A + b = ( - 1 ) × 50
\(\Rightarrow\)A + b = - 50
Bài 2 : ( Cách 1 )
Vì p là số nguyên tố lớn hơn 3 .
\(\Rightarrow\) p không chia hết cho 3
\(\Rightarrow\) p chia 3 dư 1 hoặc dư 2 .
\(\Rightarrow\orbr{\begin{cases}p+1\\p-1\end{cases}⋮3}\)
\(\Rightarrow\) ( p - 1 ) ( p + 1 ) \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 .
\(\Rightarrow\) p là số lẻ
\(\Rightarrow\) p - 1 và p + 1 là 2 số chẵn liên tiếp .
\(\Rightarrow\)( p + 1 ) ( p - 1) \(⋮\) 8
\(\Rightarrow\)( p + 1 ) ( p - 1) \(⋮\)24 ( đpcm )
Cách 2 :
Vì p là số nguyên tố lớn hơn 3 nên suy ra , p là số lẻ .
\(\Rightarrow\) Hai số p – 1 , p + 1 là hai số chẵn liên tiếp .
\(\Rightarrow\) ( p - 1) . ( p + 1 ) \(⋮\)8 (1)
Vì p là số nguyên tố lớn hơn 3 nên suy ra p = 3k + 1 hoặc p = 3k + 2 ( k thuộc N* ) .
+) Với p = 3k + 1 :
\(\Rightarrow\) ( p - 1 ) ( p + 1 ) = 3k . ( 3k + 2 ) \(⋮\)3 ( 2a )
+) Với p = 3k + 2 :
\(\Rightarrow\) ( p - 1 ) ( p + 1 ) = ( 3k - 1) . 3 . ( k + 1) \(⋮\)3 ( 2b )
Từ ( 2a ), ( 2b ) suy ra : ( p - 1 ) ( p + 1 ) \(⋮\)3 (2)
Vì ( 8 , 3) = 1 , từ (1) và (2) suy ra : ( p - 1 ) ( p + 1 ) \(⋮\)24 ( đpcm )
Bạn tham khảo 2 cách làm của mình nha !!