cho a,b,c 0 và đôi một khác nhau thỏa mãn :a^2.(b+c)=b^2.(à+c)=2014
Tính giá trị của H=c^2.(à+b)
cho ba số thực a , b , c khác 0 và đôi một khác nhau thỏa mãn a^2.(b+c)=b^2.(a+c)=20172018 . tính giá trị biểu thức H = c^2.(a+b)
Dễ vcl giải
Có a²(b+c)-b²(a+c)=2013-2013=0
a²b+a²c-b²a-b²c=0
a²b-b²a+a²c-b²c=0
ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0
(a-b)[ab+c(a+b)]=0
Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0
Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối
=>c²(a+b)-abc=0
<=>c²(a+b)=-abc
Lại có ab + c(a+b)=0 => ab + ac + cb =0
<=> a(b+c)+cb=0
<=> a²(b+c) + abc =0
=>abc =0-2013=-2013=> abc = -2013
Nên c²(a+b)=-(abc)=-(-2013)=2013 .
Vậy c²(a+b)=2023 ezzzz
Bài này dễ lớp 6 mà
Cho ba số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn a^2(b+c) = b^2(a+c) = 2014. Tính giá trị biểu thức H=c^2(a+b)
Cho ba số thực a,b,c khác 0 và đôi một không bằng nhau ,thỏa mãn : a^2.(b+c)^2=b^2.(a+c)^2=2014 tính giá trị của biểu thức H=c^2.(a+b)^2
Ba số thực a,b,c khác 0 và đôi một khác nhau, thỏa mãn a^2(b+c)=b^2(b+c)=2020^2021.
tính giá trị cuat biểu thức H= c^2(a+b)
Lời giải:
$a^2(b+c)=b^2(b+c)$
$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$
$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$
Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$
$\Rightarrow (a+b)(b+c)=0$
Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))
$\Rightarrow a+b=0$
$\Rightarrow H=c^2(a+b)=0$
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn a^2(b+c) = b^2(a+c) = 2013. Tính giá trị H = c^2(a+b)
Có phải đề sai ko nhỉ giúp tớ với . thank nhiều
Từ: \(a^2\left(b+c\right)=b^2\left(a+c\right)\Leftrightarrow a^2b-ab^2+ca^2-cb^2=0\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0.\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ac\right)=0\). Do \(a\ne b\Rightarrow ab+bc+ac=0\)(1)
Mặt khác, xét hiệu:
\(c^2\left(a+b\right)-a^2\left(b+c\right)=ac^2-a^2c+bc^2-a^2b=ac\left(c-a\right)+b\left(c-a\right)\left(c+a\right)=\)
\(=\left(c-a\right)\left(ac+bc+ab\right)=0\)
Do đó: \(H=c^2\left(a+b\right)=a^2\left(b+c\right)=2013.\)
cho ba số thực a,b,c khác 0 và đôi một khác nahu thỏa mãn a^2(b+c)=b^2(a+c)=2014. Tính giá trị biểu thức H=c^2(a+b)
(Chuyên Toán HN 2016) Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^3 + b^3 + c^3 = 3abc và abc khác 0. Tính giá trị của biểu thức: P = a.b^2/(a^2 + b^2 - c^2) + b.c^2/(b^2 + c^2 - a^2) + c.a^2/(c^2 + a^2 - b^2)
từ a^3 + b^3 + c^3 =3abc => a+b+c = 0
=> a+b= -c <=> c^2 = (a+b)^2
tương tự với -b và -a
=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2
= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0
Cho a;b;c khác không và đôi một khác nhau thỏa mãn a^2 . (b+c)= b^2.(a+c)=2013 .Tính giá trị biểu thức H=c^2.(a+b)
cho 3 số thực a;b;c # 0 và đôi một số khác thỏa mãn a^2(b+c)=b^2(a+c)=2014 . tính giá trị biểu thức H=c^2(a+b)