Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Đoàn Văn
Xem chi tiết
Diệu Huyền
11 tháng 2 2020 lúc 14:09

a, Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)

\(Đkxđ:\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)

\(Pt\Leftrightarrow x\left(x+2\right)-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tmđk\right)\end{matrix}\right.\)

Vậy .........

\(b,Đkxđ:x\ne-5\)

Ta có: \(\frac{2x-5}{x+5}=3\)

\(\Leftrightarrow2x-5=3\left(x+5\right)\)

\(\Leftrightarrow x=20\left(tmđk\right)\)

Vậy .........

c, \(Đkxđ:x\ne3\)

Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktmđk\right)\end{matrix}\right.\)

Vậy ............

Khách vãng lai đã xóa
tanhuquynh
Xem chi tiết
Nguyễn Thị Như Quyên
1 tháng 5 2019 lúc 16:08

mk chỉ giải đc có bài 1 thui nha bn bucminh

\(\frac{4}{x-2}+\frac{1}{x+3}=0\)

ĐKXĐ: x ≠ 2 và x ≠ -3

QĐKM:

⇔(x+3)4 + (x-2)1 = 0

⇔4x + 12 + x - 2 = 0

⇔4x + x = -12 + 2

⇔5x = -10

⇔x= -2

S={-2}

Tình bạn ngọt ngào
Xem chi tiết
Lê Minh Anh
21 tháng 6 2017 lúc 13:45

\(\frac{3\text{x}-1}{x-1}-\frac{2\text{x}+5}{x+3}=1-\)\(\frac{4}{x^2+2\text{x}-3}\)                              \(\left(\text{Đ}K\text{X}\text{Đ}:x\ne1;x\ne-3\right)\)

\(\Leftrightarrow\frac{\left(3\text{x}-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2\text{x}+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow\left(3\text{x}-1\right)\left(x+3\right)-\left(2\text{x}+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3\text{x}^2+8\text{x}-3-2\text{x}^2-3\text{x}+5=x^2+2\text{x}-3-4\)

\(\Leftrightarrow3\text{x}^2-2\text{x}^2-x^2+8\text{x}-3\text{x}-2\text{x}=-3-4+3-5\Leftrightarrow3\text{x}=-9\Leftrightarrow x=-3\)(không thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

Dung Thái
Xem chi tiết
Cô Hoàng Huyền
28 tháng 2 2018 lúc 9:28

a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:

\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)

\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)

\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)

\(\Leftrightarrow2t^2+t-1=6t^2-6t\)

\(\Leftrightarrow-4t^2+7t-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)

Vậy phương trình vô nghiệm.

Nguyễn Ngọc Mai Anh
Xem chi tiết
Jason
13 tháng 7 2017 lúc 20:33

Để \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

ta thấy x2+1 luôn dương với mọi x 

nên 2x(3x-5) <0

TH1: \(\orbr{\begin{cases}2x< 0\\3x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\3x>5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}\left(ktm\right)}}\)

TH2: \(\orbr{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\left(tm\right)}}\)

vậy \(0< x< \frac{5}{3}\)

 THẤY ĐÚNG CHO MK 1 NẾU KO HIỂU THÌ ib NHA

Despacito
28 tháng 3 2018 lúc 19:38

\(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Rightarrow2x\left(3x-5\right)< 0\)  ( vì \(x^2+1>0\))

\(\Rightarrow\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\)  hoặc \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)  hoặc \(\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}\)

\(\Rightarrow0< x< \frac{5}{3}\)

Ngọc Vĩ
Xem chi tiết
Nguyễn Lương Bảo Tiên
18 tháng 8 2015 lúc 22:42

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)

ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3

\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0

13x - 1 = 0

x = \(\frac{1}{13}\)

Duy An
12 tháng 2 2017 lúc 10:42

chính là 1/13 

nếu đúng thì

Mei Mei
Xem chi tiết
Nguyen
1 tháng 4 2019 lúc 21:58

a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)

sieu nhan hen
1 tháng 4 2019 lúc 22:12

(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)

\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)

\(-x^3-x^2+9x+9=0\)

\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)

\(\left(x+1\right)\left(9-x^2\right)\)=0

(x+1)(3-x)(3+x)=0

*x+1=0 =>x=-1

*3-x=0=>x=3

*3+x=0=>x=-3

Phương Thùy Lê
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2020 lúc 10:57

a/ \(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy+1=-\frac{1}{4}\\x^4+y^2+2x^2y+xy+1=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y+1\right)\left(xy+1\right)=-\frac{1}{4}\\\left(x^2+y\right)^2+xy+1=-\frac{1}{4}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy+1=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\a^2+b=-\frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\b=-\frac{1}{4}-a^2\end{matrix}\right.\)

\(\Rightarrow\left(a+1\right)\left(-\frac{1}{4}-a^2\right)=-\frac{1}{4}\)

\(\Leftrightarrow4a^3+4a^2+a=0\Leftrightarrow a\left(2a+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\Rightarrow b=-\frac{1}{4}\\a=-\frac{1}{2}\Rightarrow b=-\frac{1}{2}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x^2+y=0\\xy+1=-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-x^2\\-x^3=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)

TH2: \(\left\{{}\begin{matrix}x^2+y=-\frac{1}{2}\\xy+1=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-\frac{1}{2}-x^2\\x\left(-\frac{1}{2}-x^2\right)=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)

Nguyễn Việt Lâm
10 tháng 5 2020 lúc 11:14

b/ ĐKXĐ; ...

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+3x^2+3x+1-16x-16=\frac{8}{y^3}-\frac{8}{y}\\5\left(x^2+2x+2\right)=1+\frac{4}{y^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\frac{8}{y^3}-\frac{8}{y}\\5\left(x+1\right)^2=\frac{4}{y^2}-4\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=a\\\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-16a=8b^3-8b\\5a^2=4b^2-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^3-8b^3=16a-8b\\4=-5a^2+4b^2\end{matrix}\right.\)

Nhân vế với vế:

\(4\left(a^3-8b^3\right)=4\left(4a-2b\right)\left(-5a^2+4b^2\right)\)

\(\Leftrightarrow21a^3-10a^2b-16ab^2=0\)

\(\Leftrightarrow a\left(21a^2-10ab-16b^2\right)=0\)

\(\Leftrightarrow a\left(7a-8b\right)\left(3a+2b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\7a=8b\\3a=-2b\end{matrix}\right.\) \(\Rightarrow...\)

Huỳnh Khải
Xem chi tiết
Hoàng Ngọc Anh
3 tháng 6 2020 lúc 20:30