Giải phương trình sau:\(\frac{x}{27}-\frac{x}{33}=\frac{2}{3}\)
Giải bất phương trình sau:
\(\frac{x+20}{31}-\frac{x+27}{33}\ge\frac{x+17}{43}-\frac{x+15}{45}\)
Giải phương trình \(\frac{x+19}{27}-\frac{x+17}{29}=\frac{x+15}{31}-\frac{x+13}{33}\)
Bài làm
\(\frac{x+19}{27}-\frac{x+17}{29}=\frac{x+15}{31}-\frac{x+13}{33}\)
\(\Leftrightarrow\left(\frac{x+19}{27}+1\right)-\left(\frac{x+17}{29}+1\right)=\left(\frac{x+15}{31}+1\right)-\left(\frac{x+13}{33}+1\right)\)
\(\Leftrightarrow\frac{x+46}{27}-\frac{x+46}{29}=\frac{x+46}{31}-\frac{x+46}{33}\)
\(\Leftrightarrow\left(x+46\right).\frac{1}{27}-\left(x+46\right).\frac{1}{29}=\left(x+46\right).\frac{1}{31}-\left(x+46\right).\frac{1}{33}\)
\(\Leftrightarrow\left(x+46\right).\frac{1}{27}-\left(x+46\right).\frac{1}{29}-\left(x+46\right).\frac{1}{31}+\left(x+46\right).\frac{1}{33}=0\)
\(\Leftrightarrow\left(x+46\right)\left(\frac{1}{27}-\frac{1}{29}-\frac{1}{31}\right)=0\)
Mà \(\left(\frac{1}{27}-\frac{1}{29}-\frac{1}{31}\right)>0\forall x\)
\(\Leftrightarrow x+46=0\)
\(\Leftrightarrow x=-46\)
Vậy phương trình trên có tập nghiệm S = { -46 }
# Học tốt #
Giải các phương trình sau
1)\(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-6x+6}\)
2)\(\frac{1}{3x^2-27}+\frac{3}{4}=1+\frac{1}{x-3}\)
mng ơi giúp mình giải hai câu nay với
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
Giải các phương trình sau:
\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
em moi hoc lop 7 thoi a doi xong ki 2 nha
\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\frac{x^2-10x-29}{1971}-1+\frac{x^2-10x-27}{1973}-1=\frac{x^2-10x-1971}{29}-1+\frac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\frac{x^2-10x-29-1971}{1971}+\frac{x^2-10x-27-1973}{1973}=\frac{x^2-10x-1971-29}{29}+\frac{x^2-10x-193-27}{27}\)
\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}-\frac{x^2-10x-2000}{29}-\frac{x^2-10x-2000}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)
\(\Leftrightarrow x^2-10x-2000=0\)
\(\Leftrightarrow x^2-50x+40x-2000=0\)
\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)
\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)
Th1 \(x-50=0\Leftrightarrow x=50\)
Th2 \(x+40=0\Leftrightarrow x=-40\)
Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)
giải phương trình sau \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1972}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\frac{x^2-10x-29}{1971}-1+\frac{x^2-10x-27}{1973}-1=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\frac{x^2-10x-29-1971}{1971}+\frac{x^2-10x-27-1973}{1973}=\frac{x^2-10x-1971-29}{29}+\frac{x^2-10x-1973-27}{27}\)
\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}-\frac{x^2-10x-2000}{29}-\frac{x^2-10x-2000}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)
\(\Leftrightarrow x^2-10x-2000=0\)
\(\Leftrightarrow x^2-50x+40x-2000=0\)
\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)
\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)
Th1: \(x-50=0\Leftrightarrow x=50\)
Th2: \(x+40=0\Leftrightarrow x=-40\)
Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)
x= - 40 hoặc x=50
Bài khá dài nên mình chỉ có thể ghi được kết quả
Giải phương trình sau;
a) \(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
b) \(\left(x-1\right)^3+\left(x+1\right)^3=8\left(x-1\right)^3\)
c) \(\frac{x+19}{27}+\frac{x+17}{29}=\frac{x+15}{31}-\frac{x+13}{33}\)
Giải các phương trình sau:
a) \(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
b) \(\left(x-1\right)^3+\left(x+1\right)^3=8\left(x-1\right)^3\)
c)\(\frac{x+19}{27}+\frac{x+17}{29}=\frac{x+15}{31}-\frac{x+13}{33}\)
Giải phương trình sau : \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(pt\Leftrightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+...=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
Do \(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}>0\) nên 50 - x = 0 hay x = 50.
pt<=>29-x/21+1+27-x/23+1+...=0
<=>50-x/21+50-x/23+50-x/25+50-x/27+50-x/29=0
<=>(50-x).(1/21+1/23+1/25+1/27+1/29)=0
Do 1/21+1/23+1/25+1/27+1/29>0 nên 50-x=0 hay x=50