Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Bình Nguyễn
Xem chi tiết
Phan Phú Phat
Xem chi tiết
HQ fanclub
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Ngu Ngu Ngu
18 tháng 4 2017 lúc 10:03

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

Phan Văn Hiếu
18 tháng 4 2017 lúc 12:18

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

Potter Harry
Xem chi tiết
Cậu bé đz
Xem chi tiết
Nhok_Lạnh_Lùng
Xem chi tiết
Nguyễn Linh Chi
29 tháng 9 2020 lúc 8:25

Đặt: \(t^2=x^2+x+6\)

=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)

=> \(4t^2-\left(2x+1\right)^2=23\)

<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)

Chia các trường hợp: => x và t

Khách vãng lai đã xóa
Lê Na Nguyễn Thị
Xem chi tiết
Nguyễn Đắc Gia Khang
23 tháng 9 2021 lúc 8:27

81:9= 9

Khách vãng lai đã xóa
Lê Thị Thanh Tâm
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 12 2016 lúc 0:17

Bạn tham khảo bài này, có dạng tương tự.

http://olm.vn/hoi-dap/question/776690.html

alibaba nguyễn
21 tháng 12 2016 lúc 10:58

Ta có

\(x^4+x^3+x^2+x+1=y^2\)

\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương

Ta thấy rằng

\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Và 

\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)

\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)