Cho hệ phương trình
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}}\)
Tìm m để hệ phương trình trên có nghiệm duy nhất
Giúp mình với, mình đang cần gấp :))
1) Cho hệ phương trình \(\hept{\begin{cases}\text{mx-y = 2m+1 }\\3x+2y=2m+7\end{cases}}\)
a) Giải và biện luận hệ pt.
b) Tìm m để hệ có nghiệm duy nhất x+y>0
2) Cho hệ phương trình \(\hept{\begin{cases}2x-y=m-1\\3x+y=4m+1\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất x+y>1
3) Cho hệ phương trình \(\hept{\begin{cases}x-2y=4-m\\2x+y=8+3m\end{cases}}\)
a) Giải và biện luận hệ phương trình.
b) Tìm m để hệ có nghiệm duy nhất thỏa man x2 + y2 đạt GTNN
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
Cho hệ phương trình
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}}\)
Tìm m để hệ phương trình trên có nghiệm
Cho hệ phương trình
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}}\)
Tìm m để hệ phương trình trên có nghiệm
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tim mm để hệ phương trình trên có nghiệm duy nhất
\(\Leftrightarrow\) \(\hept{\begin{cases}y=m-mx\left(1\right)\\x+my=1\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta có: x+m(m-mx)=1
\(\Leftrightarrow\)x+m2-m2x=1
\(\Leftrightarrow\)x(1-m2)+(m2-1)=0
\(\Leftrightarrow\)(x-1)(1-m2)=0
Ta biện luận phương trình trên:
+)Với m\(\ne\)\(\pm1\) thì hpt có 1 n0 duy nhất là (x;y):(1;0)
+)Với m = \(\pm1\) thì hpt có vô số nghiệm là (x;y):(x;\(\pm1\))
Vậy .....................
bạn tự hoàn thiện nha
chúc bạn học tốt (đừng quên k cho mình nhé! thank you very much)
Cho hệ phương trình
Tính gía trị m để hệ phương trình trên có nghiệm duy nhất
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
\(\hept{\begin{cases}mx+y=m\left(d1\right)\\x+my=1\left(d2\right)\end{cases}}\)
để hệ phương trình có nghiệm duy nhất thì d1 cắt d2
=> \(\frac{m}{1}\ne\frac{1}{m}=>m^2\ne1=>m\ne\pm1\)
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
TÌm giá trị m để hệ phương trình có nghiệm duy nhất
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm