cho A=\(\frac{1}{2^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{6^2}\)+......+\(\frac{1}{100^2}\)CHỨNG MINH RẰNG A>\(\frac{3}{8}\)
Chứng minh rằng :
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
b) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
. . .
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)
b) Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)
Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
. . .
\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)
\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)
hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)
Cho \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
Chứng minh rằng \(A< \frac{1}{3}\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)
\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)
\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)
\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)
Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)
Nên : \(A< \frac{1}{3}\)
bài 1:
tìm n biết: 5n+7 chia hết 3n+2
bài 2:
1, tìm chữ số tận cùng của:
a,57^1999
b,93^1999
2, Cho A= 999993^1999 - 555557^1997
chứng minh rằng: A chia hết cho 5
bài 3:chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 5:Tìm x biết:
a)11.(x-6)=4.x+11
b)\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\)với x\(\in\)Z
c)|x-3|+1=x
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
bài 1:
5n+7 chia hết cho 3n+2
=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2
=> (15n + 21 - 15n - 10) chia hết cho 3n+2
=> 11 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}
Ta có bảng:
3n + 2 | 1 | -1 | 11 | -11 |
n | -1/3 (loại) | -1 (chọn) | 3 (chọn) | -13/3 (loại) |
Vậy n = {-1;3}
Bài 2:
1, chữ số tận cùng
a, Xét 71999
Ta có: 71999 = 71996.73 = (74)499.343 = (...1)499.343 = (....1).343 = ....3 (1)
Vậy số 571999 có tận cùng là 3
b, Xét 31999
Ta có: 31999 = 31996.33 = (34)499.27 = (...1)499.27 = (...1) . 27 = ....7 (2)
Vậy số 931999 có chữ số tận cùng là 7
2,
Từ (1) và (2) suy ra A = 9999931999 + 5555571999 = ...7 + ...3 = ....0
Vì A có chữ số tận cùng là 0 nên A chia hết cho 5.
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
Cho \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Chứng minh rằng 1/6 < A < 1/4
Chứng minh rằng:
a/\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
b/\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\frac{3}{4}\)
c/\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Cho A=\(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\). Chứng minh A<\(\frac{1}{3}\)
1)Chứng minh các phân số sau là các phân số tối giản:
a)\(A=\frac{12n+1}{30n+2}\)
b)\(B=\frac{14n+17}{21n+25}\)
2)Chứng minh rằng:
a)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b)\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c)\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Bài 1 : Chứng minh
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b) \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}< \frac{1}{100}\)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)