Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
22 tháng 2 2017 lúc 20:16

a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

. . .

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)

b) Ta có :

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)

\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)

Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

. . .

\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)

\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)

hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)

tuan tran
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 7 2017 lúc 17:37

Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)

\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)

\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)

Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)

Nên : \(A< \frac{1}{3}\)

Phạm Thị Bích Ngọc
Xem chi tiết
ST
18 tháng 5 2017 lúc 21:09

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

ST
18 tháng 5 2017 lúc 21:25

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

ST
18 tháng 5 2017 lúc 21:35

Bài 2:

1, chữ số tận cùng

a, Xét 71999

Ta có: 71999 = 71996.73 = (74)499.343 = (...1)499.343 = (....1).343 = ....3 (1)

Vậy số 571999 có tận cùng là 3

b, Xét 31999

Ta có: 31999 = 31996.33 = (34)499.27 = (...1)499.27 = (...1) . 27 = ....7  (2)

Vậy số 931999 có chữ số tận cùng là 7

2, 

Từ (1) và (2) suy ra A = 9999931999 + 5555571999 = ...7 + ...3 = ....0

Vì A có chữ số tận cùng là 0 nên A chia hết cho 5. 

lê hồng phong
Xem chi tiết
Phạm Nhật Anh
Xem chi tiết
Mika Yuuichiru
Xem chi tiết
Nguyễn Thị Trang
Xem chi tiết
hahahahaha
9 tháng 1 2016 lúc 18:25

this sentence extremely easy

Danh Ha Anh
Xem chi tiết
ღ子猫 Konღ
Xem chi tiết
Lê Thanh Minh
30 tháng 4 2018 lúc 9:49

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

Trần Cao Vỹ Lượng
30 tháng 4 2018 lúc 10:24

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)