Giải pt"
\(\frac{x^2}{2}+\frac{18}{x^2}=13.\left(\frac{x}{2}-\frac{3}{x}\right)\)
giải pt
a) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-3}=12\left(\frac{x-2}{x-3}\right)^2\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+7x+6}=6\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
giải pt \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
\(\frac{x+19}{3}+\frac{x+13}{5}=\frac{x+7}{7}+\frac{x+1}{9}\)
giúp vs mình cần gấp
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)
<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt t = x2 + x
<=> t(t - 2) - 24 = 0
<=> t2 - 2t - 24 = 0
<=> t2 - 6t + 4t - 24 = 0
<=> (t + 4)(t - 6) = 0
<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy S = {2; -3}
(lưu ý: thay "ktm" thành vô lý và giải thích thêm)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0
Đặt y = x + 4
<=> (y - 1)4 + (y + 1)4 - 2 = 0
<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0
<=> 2y4 + 12y2 = 0
<=> 2y2(y2 + 6) = 0
<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)
<=> y = 0
<=> x + 4 = 0
<=> x = -4
Vậy S = {-4}
\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)
<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)
<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)
<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)
<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
câu cuối: + 3 vào sau các phân số của pt như trên
Giải hệ PT: \(\hept{\begin{cases}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=\frac{85}{3}\\2x+\frac{1}{x+y}=\frac{13}{3}\end{cases}}\)
Giải pt sau :\(\frac{25}{x}+9\sqrt{9x^2-4}=\frac{2}{x}+\frac{18}{x^2+1}\)
B2: Cho x;y >0 .Tìm min \(B=\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)\left(2+x+y\right)\)
Giải hệ pt:
\(\left\{{}\begin{matrix}\frac{1}{2}xy+18=\frac{1}{2}\left(x+2\right)\left(y+2\right)\\\frac{1}{2}xy-16=\frac{1}{2}\left(x-2\right)\left(y+3\right)\end{matrix}\right.\)
Hệ phương trình đề cho tương đương
\(\left\{{}\begin{matrix}\frac{1}{2}xy+18=\frac{1}{2}xy+x+y+2\\\frac{1}{2}xy-16=\frac{1}{2}xy+\frac{3}{2}x-y-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=18\\\frac{3}{2}x-y-3=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=16\\\frac{3}{2}x-y=-13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{3}{2}x=3\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{6}{5}\\y=\frac{74}{5}\end{matrix}\right.\)
KL: ........................
Giải pt:
a) \(\frac{x^2+2x-16}{x^2-x-12}+1=\frac{2x+1}{x+3}+\frac{3x-8}{x-4}\)
b) \(\frac{2x-1}{x+2}+\frac{7x+9}{\left(x+2\right)\left(x-1\right)}=\frac{3x-1}{x-1}\)
c) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=\frac{x+20}{1}+\frac{x+19}{2}+\frac{x+18}{3}\)
Giải giúp mình với ạ :((
Giải phương trình sau
a, \(\frac{3x}{x^2-x+3}-\frac{2x}{x^2-3x+3}=-1\)
b, \(\frac{1}{\left(x^2+2x+2\right)^2}+\frac{1}{\left(x^2+2x+3\right)^2}=\frac{5}{4}\)
c,\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\)
d,\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
a/ Do \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{3}{x}-1}-\frac{2}{x+\frac{3}{x}-3}=-1\)
Đặt \(x+\frac{3}{x}-3=a\) ta được:
\(\frac{3}{a+2}-\frac{2}{a}=-1\)
\(\Leftrightarrow3a-2\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}-3=1\\x+\frac{3}{x}-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\)
b/ Đặt \(x^2+2x+\frac{5}{2}=a>0\)
Phương trình trở thành:
\(\frac{1}{\left(a-\frac{1}{2}\right)^2}+\frac{1}{\left(a+\frac{1}{2}\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow4\left(a+\frac{1}{2}\right)^2+4\left(a-\frac{1}{2}\right)^2=5\left(a^2-\frac{1}{4}\right)^2\)
\(\Leftrightarrow8a^2+2=5\left(a^4-\frac{1}{2}a^2+\frac{1}{16}\right)\)
\(\Leftrightarrow5a^4-\frac{21}{2}a^2-\frac{27}{16}=0\Rightarrow\left[{}\begin{matrix}a^2=\frac{9}{4}\\a^2=-\frac{3}{20}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+2x+\frac{5}{2}=\frac{3}{2}\\x^2+2x+\frac{5}{2}=-\frac{3}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm1\)
\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2+\frac{2x^2}{x^2-1}-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
Đặt \(\frac{2x^2}{x^2-1}=a\)
\(\Rightarrow a^2-a-\frac{10}{9}=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{3}\\a=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x^2}{x^2-1}=\frac{5}{3}\\\frac{2x^2}{x^2-1}=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=-5\left(l\right)\\x^2=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{1}{2}\)
d/ĐKXĐ: ...
\(\Leftrightarrow\left(x^2+\frac{36}{x^2}\right)-13\left(x-\frac{6}{x}\right)=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow x+\frac{36}{x^2}=a^2+12\)
\(\Rightarrow a^2-13a+12=0\Rightarrow\left[{}\begin{matrix}a=1\\a=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=1\\x-\frac{6}{x}=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-6=0\\x^2-12x-6=0\end{matrix}\right.\)
1. Giải PT sau
a) \(\left(\frac{x-1}{x+1}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)+3\left(\frac{x+1}{x-2}\right)^2=0\)
b) \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)
Giải pt: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2=\frac{7\left(x^2-9\right)}{x^2-4}\)
\(x\ne\pm2\)
Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:
\(a^2+6b^2=7ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)