giải phương trình sau
\(x\left(x+2\right)-3x+6=0\)
\(\sqrt{x^6+37x^4+400x^2+1344}=\left(x^2+5\right)\left(3x^2-6-\sqrt{x^2+12}\right)+42\)
Giải phương trình !
Baif1 : Phân tích đa thức sau thành nhân tử : \(f\left(x\right)=x^5+y^5-\left(x+y\right)^5\)
Bài 2: Giai phương trình ; \(\left(x-6\right)^4+\left(y-8\right)^4=16\)
Bài 3 : giải phương trình \(\left(x^2+3x-4\right)^3+\left(2x^2-5x+3\right)^3=\left(3x^2-2x-1\right)^3\)
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
Giải phương trình
a)\(\sqrt{2\left(3x-2\right)^2}-5=0\)
b)\(\frac{3}{4}\left(5\sqrt{x+5}-2\right)=\frac{1}{7}\left(6\sqrt{x}+3-10\right)\)
giải phương trình sau
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Rightarrow\left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x+2\right)\left(3x-2\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\)
=> 3x + 2 = 0 => x = -2/3
hoặc x + 1 = 0 => x = -1
hoặc 1 - 2x = 0 => x = 1/2
(3x+2)(x2-1) = (9x2-4)(x+1) => (3x+2)(x-1)(x+1) = [ (3x)2- 22 ](x+1) => (3x+2)(x-1) = (3x+2)(3x-2)
=> x-1 = 3x-2 => x = 3x-1 => 1 = 3x-x = 2x => x = 1:2 = 0,5
Giải phương trình :
\(x^2-2\left(x+1\right)\sqrt{x^2-1}-3x^2+6x-1=0\)
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
giải hệ phương trình
\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)
\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}14x+7y-15x-5y=6\\3x+6y-2x-6y=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+2y=6\\x=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}\)
Giải phương trình :
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
xét x=0 thấy không là nghiệm
xét x khác 0; đặt x=a; \(\frac{x}{x-1}=b;=>\frac{1}{a}+\frac{1}{b}=1< =>a+b=ab.\)
a3+b3+3ab-2=0<=> (a+ b)[(a+b)2- 3ab] + 3ab - 2=0 <=> ab(a2b2- 3ab)+ 3ab- 2=0
<=> (ab)3- 3(ab)2 + 3ab - 2=0 <=> (ab- 1)3 -1 =0 <=> ab- 1 = 1 <=> ab= 2 <=> \(x.\frac{x}{x-1}=2< =>x^2=2x-2< =>x^2-2x+2=0\)(vô nghiệm)
vậy pt vô nghiệm
Giải các hệ phương trình :
a) \(\hept{\begin{cases}2x\left(x+1\right)\left(y+1\right)+xy=-6\\2y\left(y+1\right)\left(x+1\right)+yx=6\end{cases}x,y\inℝ}\)
b) \(\hept{\begin{cases}x^3+3x^2y-4y^3+x-y=0\\\left(x^2+3x+2\right)\left(y^2+7y+12\right)=24\end{cases}}\)
b, \(x^3+3x^2y-4y^3+x-y=0\)
\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)
\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó pt (2) của hệ trở thành:
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)
Rút gọn thừa số chung :
\(.\frac{x}{3x-1}+\frac{1}{3x-1}=\frac{x}{3x+2}+\frac{3}{3x+2}\)
Đơn giản biểu thức :
\(-\frac{x}{3x+2}-\frac{3}{3x+2}+\frac{x}{3x-1}+\frac{1}{3x-1}=0\)
Giải phương trình
\(-\frac{3x-5}{\left(3x-1\right)\left(3x+2\right)}=0\)
Giải phương trình :
3x=5
\(\frac{1}{3x-1}=0\)
\(\frac{1}{3x+2}=0\)