Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Linh
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 11 2019 lúc 17:25

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)

\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)

\(=1-\frac{1}{\left|x-2019\right|+2021}\)

\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)

Dấu "=" xảy ra tại \(x=2019\)

Khách vãng lai đã xóa
Me
21 tháng 11 2019 lúc 18:43

                                                            Bài giải

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN

          Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019

\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)

\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)

\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)

Khách vãng lai đã xóa
đỗ mạnh hùng
Xem chi tiết

B = |\(x\) + 20| + |y - 21| + 2020

 |\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y

B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020

B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)

Bmin = 2020 khi (\(x;y\)) = (-20; 21)

A = |\(x\) + 19| + 1980 

|\(x\) + 19| ≥ 0 \(\forall\) \(x\)

|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)

A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19

Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19

C = 3.|\(x-15\)| + (y + 13)2 - 2175

|\(x\) - 15| ≥ 0 ∀ \(x\); (y + 13)2 ≥ 0 ∀ y

C = 3.|\(x\) - 15| + (y + 13)2 - 2175 ≥ - 2175

C ≥ - 2175 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x-15=0\\y+13=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=15\\y=-13\end{matrix}\right.\)

Vậy Cmin = -2175 khi  (\(x\); y) = (15; -13)

 

nguyến thị hoàng hà
Xem chi tiết
Vy Vy
Xem chi tiết
đỗ mạnh hùng
Xem chi tiết
đỗ mạnh hùng
Xem chi tiết
đỗ mạnh hùng
Xem chi tiết
đỗ mạnh hùng
Xem chi tiết
đỗ mạnh hùng
Xem chi tiết