Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zek Tim
Xem chi tiết
GT 6916
Xem chi tiết
ST
18 tháng 11 2018 lúc 17:13

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=>\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=>\(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}\)

hay x:y:z=a:b:c

depgiaicogisaidau
18 tháng 11 2018 lúc 17:29

ai xoạc nào

Phan The Anh
Xem chi tiết
tôi cô đơn
Xem chi tiết
vietdungtotbung
Xem chi tiết
Trương Thái Hậu
12 tháng 8 2016 lúc 9:06

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{\left(bz-cy\right).x}{ax}=\frac{\left(cx-az\right)y}{by}=\frac{\left(ay-bx\right).z}{cz}\)

\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}\)

Suy ra:

        bz - cy = 0                        (1)

        cx - az = 0                        (2)

        ay - bx = 0                        (3)

Từ (1) ta có: \(bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\left(I\right)\)

Từ (2) ta có: \(cx=az=\frac{z}{c}=\frac{x}{a}\left(II\right)\)

Từ (3) ta có: \(ay=bx=\frac{x}{a}=\frac{y}{b}\left(III\right)\)

Từ (I), (II), (III) => x: y: z = a: b: c

Thủy Lê
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2019 lúc 16:53

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)

\(\Leftrightarrow x:y:z=a:b:c\)

Edogawa Conan
5 tháng 10 2019 lúc 16:57

Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)

Nhân Tư
Xem chi tiết
Yen Nhi
27 tháng 4 2022 lúc 22:27

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a.a}=\dfrac{b\left(cx-az\right)}{b.b}=\dfrac{c\left(ay-bx\right)}{c.c}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-baz}{b^2}=\dfrac{cay-cbx}{c^2}\)

\(=\dfrac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\dfrac{c}{z}=\dfrac{a}{x}\\\dfrac{ay-bx}{c}=0\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

\(\Rightarrow a:b:c=x:y:z\)

Đỗ Trung Quân
Xem chi tiết
Võ nguyễn Thái
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 7 2016 lúc 11:03

Ta có : 

  \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}\)

             \(=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)

\(\Leftrightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\)          \(\left(1\right)\)

     \(cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\)           \(\left(2\right)\)

     \(ay=bx\Rightarrow\frac{y}{b}=\frac{x}{a}\)           \(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) hay \(x:y:z=a:b:c\)