Cho tam giác ABC có AD là đường phân giác của góc A ( D thuộc BC). Biết AC>AB. chứng tỏ DC>DB
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Chứng minh DC-DB<AC-AB
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC
Cho tam giác ABC có AB = AC. AD là tia phân giác của góc A (D thuộc BC). Chứng minh:
a, tam giác ABD = tam giác ACD
b, DB = DC
a) Xét tam giác ABD và tam giác ACD, có:
AB = AC ( Giả thiết ) (1)
AD chung (2)
Góc BAD = CAD ( D là tia phân giác của góc A ) (3)
Từ (1); (2); (3) => tam giác ABC = tam giác ACD ( c-g-c)
b) Tam giác ABC = tam giác ACD => DB = DC ( 2 cạnh tương ứng ).
Chúc bạn học tốt!
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC).Biết AB =6cm,Bc=10cm
a,chứng minh rằng tam giác HBA đồng dạng vs tam giác ABC
b,Tính AC,AH,HB
c,I và K lần lượt là hình chiếu của điểmH lên AB, AC. CHứng minh rằng AI .AB=AK.AC
d,Vẽ phân giác của tam giác AD của tam giác ABC ( D thuộc BC).Đường phân giác DE của tam giác ABD(E thuộc AB),đường phân giác DF của tam giác ADC(F thuộc AC) chứng minh rằng EA/EB*DB/DC*FC/FA=1
a) Xét t/giác HBA và t/giác ABC
có: \(\widehat{B}\):chung
\(\widehat{BHA}=\widehat{A}=90^0\)(gt)
=> t/giác HBA đồng dạng t/giác ABC (g.g)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8 (cm)
Ta có: t/giác HBA đồng dạng t/giác ABC
=> HB/AB = AH/AC = AB/BC
hay HB/6 = AH/8 = 6/10 = 3/5
=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)
c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)
=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)
Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)
\(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)
=> \(\widehat{AHK}=\widehat{C}\) (2)
Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)
Xét t/giác AKI và t/giác ABC
có: \(\widehat{A}=90^0\): chung
\(\widehat{AIK}=\widehat{C}\)(cmt)
=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC
d) Do AD là đường p/giác của t/giác ABC => \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)
<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)
=> BD = 10 - 40/7 = 30/7 (cm)
DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)
DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)
Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)
Cho tam giác ABC có góc A=60 độ, AB<AC, đường cao BH ( H thuộc AC)
a) So sánh góc ABC với ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A ( D thuộc BC) . Vẽ BI vuông góc với AD tại I. Chứng minh tam giác AIB = tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
d) Chứng minh DC< DB
a)
ta có : AB<AC
suy ra ACB<ABC
ABH=90-60=30
b)
DAC=DAB=90-(A/2)=90-30=60
ABI=90-30=60
xét 2 tam giác vuông AIB và BHA có
AB(chung)
ta có:
BAH=ABD=60(cmt)
suy ra AIB=BHA(CH-GN)
c)
theo câu a, ta có tam giác AIB=BHA(CH-GN)
suy ra ABI=BAC=60 độ
BEA=180-60-60=60 độ
ta có: ABE=BEA=EAB=60 suy ra tam giác ABE đều
a,Ta có :
AB<AC (gt)
=> C<B
=> góc ABC < góc ACB
Tính góc ABH
Ta có : A+H+B=180 ( tổng 3 góc trong 1 tam giác )
60+90+B=180 ( góc H =90 vì vuông góc )
150+B=180
B=180-150
B=30
=>ABH=30
b,Xét 2 tg AIB= tg BHA vuông tại I và H
Có : I là góc chung
=> tg AIB= tg BHA(gcg)
c,ko bt lm
d,ko bt luôn
Cho tam giác ABC vuông tại A, có AB=6cm; AC = 8cm; BC=10cm. Đường cao AH (H thuộc BC)
a) Chỉ ra các cặp tam giác đồng dạng
b) Cho AD là tia phân giác của tam giác ABC (D thuộc BC). Tính độ dài DB và DC
c) Chứng minh rằng AB^2 = BH*HC
d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD.
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
Cho tam giác ABC có A=600,AB<AC,đường cao BH (H thuộc AC)
a) So sánh: góc ABC và góc ACB. Tính ABH
b) Vẽ AD là tia phân giác của góc A (D thuộc BC), Vẽ BI vuông góc AD tại I. Chứng minh: tam giác AIB = tam giác BHA
c) Tia BI cắt AC ở E. chứng minh tam giác ABE đều
d) chứng minh DC>DB
Cho tam giác ABC có góc A = 60 độ, AB < AC, đường cao BH ( H thuộc AC )
a, So sánh: góc ABC và góc ACB. Tính góc ABH
b, Vẽ AD là phân giác của góc A ( D thuộc BC ), vẽ BI vuông góc AD tại I. Chúng minh: tam giác AIB = tam giác BHA
c, Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
d, Chứng minh DC > DB
a) Vì BH là p/g của góc ABC
=> góc ABH = góc HBC = 1/2 góc BAC
=> góc ABH = 1/2. 60 độ
=> góc ABH = 30 độ
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC). a) Tính DB/DC. b) Kẻ đường cao AH (H thuộc BC). Chứng minh tam giác AHB đồng dạng tam giác CHA
Cho tam giác ABC có AD là phân giác của góc BAC (D thuộc BC). C/m: DB/DC = AB/AC