CM pt có ít nhất 2 nghiệm riêng biệt:-x^4-x^3+(m-2)x^2+(1-3m)x+2m+2020
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm x để PT có 4 nghiệm phân biệt
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m+1\right)x+m^2+m=0\)
Để PT có 4 nghiệm phân biệt thì
\(\Leftrightarrow\hept{\begin{cases}1\ne0\left(lđ\right)\\m^2+m\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-1\end{cases}}}\)
Vậy \(m\ne0;m\ne-1\)thì PT có 4 nghiệm phân biệt
Bt:a, xác định m để pt ẩn x sau có 2 nghiệm dương phân biệt: x^2-(m+3)x+3m=0
b, xác định m để pt ẩn x sau có nghiệm này bằng 3 nghiệm kia: x^2-(2m+1)x+m^2+m-6=0
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt
\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m-1\right)x+m^2+m=0\)
tìm m để PT có 4 nghiệm phân biệt
Bt:xác định m để pt án x sau có 2 nghiệm phân biệt:
X^2-(3m+1)x+2m^2+3m-2=0.
\(x^2-\left(3m+1\right)x+2m^2+3m-2=0\)
Ta có \(\Delta=\left(3m+1\right)^2-4.\left(2m^2+3m-2\right)\)
\(=9m^2+6m+1-8m^2-12m+8\)
\(=m^2-6m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
hay m khác 3
Vậy m khác 3 thì pt có 2 nghiệm phân biệt
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
Chp pt: \(x^2-\left(2m+3\right)m^2+3m+2=0\)
1)CM pt luôn có 2 nghiệm phân biệt
2)Tìm m để pt có 1 nghiệm bằng 2.Tìm nghiệm còn lại
3)Xác định m để pt có 2 nghiệm thỏa mãn: \(-3< x_1< x_2< 6\)
4)Xác định m để pt có 1 nghiệm bằng bình phương nghiệm kia
Chứng minh phương trình sau có ít nhất 2 nghiệm phân biệt Với mọi m thuộc R. đặt f(x)=X^4+(m-2)x^3+x^3+(3m+1)x-4m-2016=0
Cho pt:
2x2 + mx + m - 3 = 0
Chứng minh rằng pt có 2 nghiệm phân biệt
Cho pt:
x2 - 2(2m-1)x + 3m2 - 4 = 0
Chứng minh rằng pt luôn có nghiệm với mọi m
Tìm m để x12 + x22 - x1x2 = 5
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!