cho a+b+c=1 va 1/a+1/b+1/c=0.Chung minh rang : a^2+b^2+c^2=0
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
cho 2/a=1/b+1/c(a,b,c khac 0,a khac c).Chung minh rang b/c=b-a/a-c
Cho a,b>0 VA a+b=1 chung minh rang (a+1/a)^2+(b+1/b)^2>/25/2
Cho a/(b+c)+b/(c+a)+c/(a+b)=1. chung minh rang
a^2/(b+c)+b^2/(c+a)+c^2/(a+b)=0
a+b+c=0 va 1/a+1/b+1/c=1 chung minh a^2+b^2+c^2=1
Đề: Cho \(a+b+c=1\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Chứng minh: \(a^2+b^2+c^2=1\)
-----------------------------------------
Từ \(a+b+c=1\)
\(\Rightarrow\) \(\left(a+b+c\right)^2=1\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\) \(\left(1\right)\)
Mặt khác, ta lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) \(\Leftrightarrow\) \(\frac{ab+bc+ca}{abc}=0\) \(\Leftrightarrow\) \(ab+bc+ca=0\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra \(a^2+b^2+c^2=1\) \(\left(đpcm\right)\)
Cho a b c la cac so thuc. A+b+c=1 va 1/a+1/b+1/c=0. Chung minh A mu 2+ b mu 2+c mu 2=1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
cho so thuc a,b,c voi a ,b duong va c\(\ne\)0 thoa man
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
1/chung minh c<0 , a+c>0 va b+c >0
2/chung minh \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho a. b, c > 0 . Chung minh rang : 4/a + 5/b + 3/c >= 4(3/a+b + 2/b+c + 1/c+a)
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
cho a+b/a-b=c+a/c-a va abc khac 0 chung minh rang tu 3 so abc ( co 1 so su dung 2 lan co the lap thanh 1 ti le thuc