Cho \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) . Hãy chứng minh rằng:
a) \(A>\frac{7}{12}\) b)\(\frac{5}{8}< A< \frac{3}{4}\)
Cho A = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(a,\) Chứng minh rằng \(A>\frac{7}{12}\)
b) Chứng minh : \(A>\frac{5}{8}\)
Cho biểu thức A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....................+\frac{1}{200}\). Chứng minh rằng \(A>\frac{7}{12}\)
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy
cho A=\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)
chứng minh rằng : a, A>\(\frac{7}{12}\)
b, A>\(\frac{5}{8}\)
Chứng minh:
A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\) (mỗi ngoặc có 50 số hạng)
\(;A>\left(\frac{1}{150}.50\right)+\left(\frac{1}{200}.50\right)=50.\left(\frac{1}{150}+\frac{1}{200}\right)=50.\frac{7}{600}=\frac{7}{12}\)
Bài 1
a rút gọn B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
b Chứng minh A=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)= \(\frac{1}{20}\)
vậy B= \(\frac{1}{20}\)
b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8
Vậy A>5/8
Nhớ k mik nha!!!!!!!!!!!!!
a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\)
b/ Chứng minh A> 5/8
\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\)
\(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)
Chứng minh:
A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
a)cho a,b là các số dương t/m a3+b3=a5+b5 chứng minh rằng a2+b2 bé hơn hoặc bằng 1+ab
b)cho S=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}\).chứng minh rằng S>\(\frac{7}{12}\)
1)
\(Cho:\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh \(B>\frac{7}{12}\)
1)
Cho \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh: \(B>\frac{7}{12}\)