Biết \(\frac{x}{y}\)=2 và y khác 0. Khi đó \(\frac{2x+y}{x-y}\) là.....
Biết \(\frac{x}{y}\)=2 và y khác 0. khi đó\(\frac{2x+y}{x-y}=\)????
x/y=2=>x=2y
=>\(\frac{2x+y}{x-y}=\frac{2\left(2y\right)+y}{2y-y}=\frac{4y+y}{y}=\frac{5y}{y}=5\)
Biết \(\frac{x}{y}\)=2 và y khác 0. Khi đó \(\frac{2x+y}{x-y}\)=.....
Biết x;y;z khác 0 và \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)Khi đó \(\frac{x+y+z}{2}=...\)
y+z+1+x+z+2+x+y-3/x+y+z=2(x+y+z)/x+y+z=2
nên x+y+z=1:2=0,5 suy ra x+y+z/2=0,5:2=1/4
Biết x;y;z khác 0 và \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\) Khi đó \(\frac{x+y+z}{2}\)=??
Biết x;y;z khác 0 và\(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)=\(\frac{1}{x+y+z}\)
Khi đó \(\frac{x+y+z}{2}\)
Tính: B=\(\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}\)khi x,y,z là các số thực khác 0 và\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)
\(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)
CM tương tự ta cũng có : \(x=y;y=z\)
\(\Rightarrow x=y=z\) Thay vào B ta được :
\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)
\(N=\frac{x}{y-2}+\frac{2x-3y}{x-6}\) biết 3y-x = 6
\(Q=\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-x^2-z^2}+\frac{z^2}{z^2-x^2-y^2}\)biết x+y+z = 0 và x,y,z khác 0
\(\frac{x}{-2}=\frac{9}{y}=\frac{3-2x}{5}\)và x+y=0 khi đó x=;y=
biết x/y=2 và y khác 0 .khi đó 2x+y/x-y = ?
\(x=2y\Rightarrow\frac{2x+y}{x-y}=\frac{4y+y}{2y-y}=\frac{5y}{y}=5\)