a+b+c=0 va 1/a+1/b+1/c=1 chung minh a^2+b^2+c^2=1
cho a+b+c=1 va 1/a+1/b+1/c=0.Chung minh rang : a^2+b^2+c^2=0
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
Cho a b c la cac so thuc. A+b+c=1 va 1/a+1/b+1/c=0. Chung minh A mu 2+ b mu 2+c mu 2=1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
Co a+b+c=1 va 1/a+1/b+1/c=0.Chung minh a^2 + b^2 + c^2 =1 [toan lop 8]
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\Leftrightarrow a^2+b^2+c^2+2.0=1\)
=> dpcm
cho so thuc a,b,c voi a ,b duong va c\(\ne\)0 thoa man
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
1/chung minh c<0 , a+c>0 va b+c >0
2/chung minh \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
cho 3 so a,b,c khac 0 va (a+b+c)^2=a^2+b^2+c^2 . chung minh \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3abc\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
cho a/b=c/d khac 1 va a,b,c,d khac 0. chung minh (a-b)^2/(c-d)^2=ab/cd
cho (a+b+c)2=a2+b2+c2 va a,b,c khác 0.chung minh 1/a3+1/b3+1/c3=3/abc