so sánh \(\frac{-1}{36}\)và \(\frac{-1}{72}\)
từ tỉ lệ thức \(\frac{12}{18}=\frac{24}{36}=\frac{72}{108}\)tính các tỉ số sau và so sánh chúng với các tỉ số \(\frac{12}{18}\)và \(\frac{36}{54}\)
tất cả các tỉ số bạn nêu đều bằng 2/3
So sánh \(\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \frac{1}{64} + \frac{1}{100} + \frac{1}{144} + \frac{1}{196}\) và \(\frac{1}{2}\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\cdot\frac{6}{7}\)
\(=\frac{3}{14}\)
\(< \frac{1}{2}\)
So sánh:
B= \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)và \(1\)
Trình bày đầy đủ giúp mình nha các bạn.!
Ta có: \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}\)
\(B=\frac{10}{10}-\frac{1}{10}\)
\(B=\frac{9}{10}\)
Vậy: \(B=\frac{9}{10}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}\)
\(B=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\)nên B < 1
Vậy B < 1
Ta có
\(B=\frac{1}{2}+\frac{1}{6} +...+\frac{1}{90}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}\)
Vì 0<\(\frac{1}{10}\)<1
=>1-\(\frac{1}{10}\)<1
=>B<1
So sánh
\(\frac{10^{37}+1}{10^{36}+1}\)và \(\frac{10^{36}+1}{10^{35}+1}\)
Cho P= \(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh P với \(\frac{3}{5}\)
P = 1/3 + 1/16 + 1/19 + 1/21 + 1/61 + 1/72 + 1/83 + 1/94
P = 0, 5490527821
3/5 = 0, 6
Mà 0, 5490527821 < 0, 6
Nên: P < 3/5
So sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{36}}vs14\)
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{36}}\)\(=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{3}}+...+\frac{2}{\sqrt{36}+\sqrt{36}}\)
\(< \frac{2}{\sqrt{1}}+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)
\(=2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=2.\sqrt{36}=12< 14\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{36}}< 14\)
Bài 3
Cho B =\(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh B=\(\frac{3}{5}\)
Ta có : 1/61 +1/72 +1/83 +1/94 < 1/60 x4 =1/15
1/16 +1/19 +1/21 < 1/15 x3 =3/15
1/3 =5/15
Do đó: B < 1/15 + 3/15 +5/15 = 9/15= 3/5
Vậy B< 3/5
\(\text{Bài giải}\)
\(\text{Ta có : }\)
\(B=\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
B = 0,333333333 + 0,0625 + 0,0526315789 + 0,0476190476 + 0,0163934426 + 0,0138888889 + 0,0120481928 + 0,0106382979
B = 0,549052782
Cho B=\(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh B với \(\frac{3}{5}\)
So sánh :
\(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{36}}\) và 6
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)