Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Nhi
Xem chi tiết
Phước Nguyễn
9 tháng 8 2016 lúc 10:40

Ta có:

\(x=\sqrt{2}+\sqrt{3}\)

nên  \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\)  \(x^2=5+2\sqrt{6}\)

\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)

\(\Leftrightarrow\)  \(x^4-10x^2+25=24\)

hay   \(x^4-10x^2+1=0\)

Đa thức  \(a^4-10a^2+1=0\)  là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\)  làm nghiệm

Big City Boy
Xem chi tiết
Edogawa Conan
Xem chi tiết
Minh Hiếu
Xem chi tiết
Trần Minh Hoàng
4 tháng 1 2023 lúc 8:34

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

o0o I am a studious pers...
Xem chi tiết
ngonhuminh
7 tháng 1 2017 lúc 10:48

\(a^3=140+3.a\)

Vậy a nghiệm của  phương trình.x^3-3x-140 =0

ngonhuminh
7 tháng 1 2017 lúc 10:51

nhầm dấu

a^3=140-3a

đa thức cần tim là x^3+3x-140

ngonhuminh
7 tháng 1 2017 lúc 11:15

nhắc lại HĐT: (a+b)^3=a^3+b^3+3ab(a+b) 

\(a=\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\)

\(a^3=\left(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\right)^{^3}\)

\(a^3=\left(70-\sqrt{4901}\right)+\left(70+\sqrt{4901}\right)+3.\left(\sqrt[3]{70^2-4901}\right).a\)

\(a^3=70+70+3.\sqrt[3]{-1}.a=140-3a\)

gấukoala
Xem chi tiết
Đoàn Đức Hà
18 tháng 6 2021 lúc 16:01

\(x=3\sqrt{3}-2\Leftrightarrow x+2=3\sqrt{3}\Rightarrow\left(x+2\right)^2=\left(3\sqrt{3}\right)^2\)

\(\Leftrightarrow x^2+4x+4=27\Leftrightarrow x^2+4x-23=0\)

Vậy \(f\left(x\right)=x^2+4x-23\)là một đa thức thỏa mãn ycbt. 

Khách vãng lai đã xóa
Daco Mafoy
Xem chi tiết
Hà Phương
Xem chi tiết
Kim Phượng Nguyễn
Xem chi tiết