: Cho đoạn thẳng AB. M là điểm bất kì không thuộc đường thẳng AB. Gọi E là trung điểm
MB và F là điểm thuộc đoạn MA sao cho FM = 2FA. CMR: đường thẳng EF luôn đi qua một
điểm cố định..
Cho đường tròn (O), dây AB cố định không đi qua O; Lấy hai điểm C và D thuộc
dây AB sao cho AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB tại E và
F.
a) Chứng minh AE < EF
b) Một điểm M di động trên đường tròn (O), điểm P thuộc đoạn thẳng AM, điểm Q
thuộc đoạn thẳng BM sao cho AP = BQ. Chứng minh đường trung trực của PQ luôn
đi qua điểm cố định.
bài 1: Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE. Khi M di chuyển trên đường thẳng AB:
a, chứng minh MI luôn đi qua giao điểm của AD , BE.
B, điểm I di chuyển trên đường nào ?
Bài 2: Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB . lấy N,P thuộc tia Mx sao cho MN = AM và MP=MB . Gọi I,K lần lượt là trung điểm của các đoạn thẳng AN , PB và O là trung điểm của đoạn thẳng IK
a, tính độ dài khoảng cách từ O tới AB
b, Gọi C là giao điểm của tia AI và tia BP. Chứng minh rằng khi M di chuyển trên đoạn thẳng AB thì C luôn cố định
c, khi điểm M di chuyển trên đoạn thẳng AB thì điểm O di chuyển trên đường nào ?
·
Cho tam giác ABC có D, E, F theo thứ tự là trung điểm các cạnh BC, CA, AB. Gọi K là một điểm cố định thuộc đoạn EF và giả sử đường tròn đường kính AD cắt một đường thẳng bất kỳ đi qua K tại M, N. Các đường thẳng ME, NF cắt đường tròn đường kính AD lần lượt ở P, Q. Chứng minh rằng trung điểm của P Q thuộc một đường tròn cố định.
Dễ thấy P là điểm chính giữa nên D,N,P thẳng hàng
Cần chứng minh
Ta có :
b) Theo câu a suy ra
Mà cân tại I ( do IP = ID ) nên
Suy ra
c) từ câu b ( 1 )
Theo hệ thức lượng, ta có :
Do đó :
Suy ra ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với IM // PN suy ra A,M,N thẳng hàng
Cho hình vuông ABCD cạnh là x(cm), lấy điểm M bất kì thuộc cạnh AB, Tia CM cắt DA tại E, tia Cz vuông góc với tia CE cắt AB tại F. Gọi N là trung điểm của đoạn thẳng EF
a/ Chứng minh: CE = CF.
b/ Chứng minh 4 điểm D, C, N, E thuộc một đường tròn.
c/ Chứng minh: khi điểm M chạy trên cạnh AB (M không trùng với A và B) thì điểm N luôn chạy trên một đường thẳng cố định
Cho đoạn thẳng AB = 5 cm , M bất kì thuộc đoạn thẳng AB . Gọi E,F lần lượt là trung điểm của AM và BM. Chừng tỏ độ dài EF không phụ thuộc vào vị trí của M trên đoạn thẳng AB
Cho đường tròn tâm O, bán kính R. AB là 1 dây cung cố định và AB = R nhân căn 3. M là trung điểm của AB. C là điểm chuyển động trên cung AB. I là trung điểm của AC. H là hình chiếu của I trên BC
a. Cmr: Điểm I thuộc đường tròn bán kính OB
b. Tính góc AOB và độ dài đoạn thẳng OM theo R
c. Cmr: I thuộc 1 đường cố định
d. Cmr: Đường thẳng IH đi qua 1 điểm cố định
e. Cmr: H thuộc 1 đường thẳng cố định
f. Xác định vị trí điểm C sao cho diện tích OBCA lớn nhất
Cho đoạn thẳng AB dài 10cm và trung điểm M của đoạn thẳng đó. Lấy điểm E thuộc đoạn thẳng MA và điểm F thuộc đoạn thẳng MB sao cho AE = BF =3cm . Hỏi điểm M có là trung điểm của đoạn thẳng EF không? Vì sao? Help me
điểm M là trung điểm của EF vì EM=2 cm,MF=2cm nên EM=MF=EF chia 2
Nếu M là trung điểm của EF thì M phải thỏa mãn 2 điều kiện :
+ M nằm giữa EF ( 1 )
+ ME và MF phải bằng nhau ( 2 )
Theo đầu bài, E thuộc MA và F thuộc MB nên :
=> M nằm giữa EF thỏa mãn điều kiện 1 ( vẽ hình ra để hình dung )
Theo đầu bài, AE = 3cm BF = 3cm
mà AE thuộc AM => AE = ME mà AE = 3cm => ME = 3cm
FB thuộc MB => FB = MF mà FB = 3cm => MF = 3
=> ME = MF ( 3 = 3 ) thỏa mãn điều kiện 2
=> M là trung điểm của EF
Gọi M là một điểm bất kì trên đường thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF.
a. Chứng minh rằng AE vuông góc với BC.
b. Gọi H là giao điểm của AE và BC. Chứng minh rằng ba điểm D, H, F thẳng hàng.
c. Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi M chuyển động trên đoạn thẳng AB cố định.
d. Tìm tập hợp các trung điểm K của đoạn nối tâm hai hình vuông khi M chuyển động trên đường thẳng AB cố định.
Gọi M là một điểm bất kì trên đường thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF.
a. Chứng minh rằng AE vuông góc với BC.
b. Gọi H là giao điểm của AE và BC. Chứng minh rằng ba điểm D, H, F thẳng hàng.
c. Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi M chuyển động trên đoạn thẳng AB cố định.
d. Tìm tập hợp các trung điểm K của đoạn nối tâm hai hình vuông khi M chuyển động trên đường thẳng AB cố định.