A=1/2+1/3+1/4+...+1/308+1/309
B=308/1+307/2+306/3+...+3/306+2/307+1/308
Tính A/B.
A=1/2+1/3+1/4+...+1/308+1/309
B=308+307/2+306/3+...+3/306+2/307+1/308
Tính A/B.
bài này dễ nhưng mất tg lắm k mình trước mình làm sau cho
cho A=1/2+1/3+1/4+...+1/308+1/309
B=308/1+307/2+306/3+...+3/306+2/307+1/308
tim A/B
Cho A= 1/2+1/3+1/4+1/5+...+1/308+1/309
B=308/1+307/2+306/3+305/4+...+3/306+2/307+1/308
Tính A/B
Cho:
A=1/2+1/3+1/4+1/5+...+1/308+1/309
B=308/1+307/2+306/3+...+3/306+2/307+1/308
Tính A/B ? ( Có cách làm )
cho A =1/2 +1/3 +1/4 +.....+1/308+1/39
B = 308/1 +307/2 +.....+3/306 +2/307+1/308.Tính a+b
Cho A = 1/2 + 1/3 + 1/4 + 1/5 + ............ + 1/308 + 1/309
B = 308/1 + 307/2 + 306/3 + ................... + 3/306 + 2/207 + 1/308
Tính A/B
Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{308}+\frac{1}{309}\)
B=\(\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+...+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\). Tính \(\frac{A}{B}\)
A = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{308}\)+ \(\frac{1}{309}\)
B = \(\frac{308}{1}\)+ \(\frac{307}{2}\)+ \(\frac{306}{3}\)+\(\frac{3}{306}\) + \(\frac{2}{307}\)+ \(\frac{1}{308}\)
=> B = \(\frac{309-1}{1}\)+ \(\frac{309-3}{3}\)+... + ( 309 ... )
=> B = 309 + 309 . ( \(\frac{1}{2}\) + \(\frac{1}{3}\)+... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\)- \(\frac{1}{1}\)+ \(\frac{2}{2}\)+ ... + \(\frac{308}{308}\)+ \(\frac{309}{309}\)
=> B = 309 . ( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ ... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\))
=> \(\frac{A}{B}\)= \(\frac{1}{309}\)
Lâu rồi bạn còn cần lời giải ko mình giải cho
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{308}+\frac{1}{309}\)
\(B=\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+....+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\)
Tính\(\frac{\:A}{B}\)
Ta có :
\(B=\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+...+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\)
\(B=\left(\frac{307}{2}+1\right)+\left(\frac{306}{3}+1\right)+...+\left(\frac{3}{306}+1\right)+\left(\frac{2}{307}+1\right)+\left(\frac{1}{308}+1\right)+1\)
\(B=\frac{309}{2}+\frac{309}{3}+...+\frac{309}{306}+\frac{309}{307}+\frac{309}{308}+\frac{309}{309}\)
\(B=309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{306}+\frac{1}{307}+\frac{1}{308}+\frac{1}{309}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{308}+\frac{1}{309}}{309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{308}+\frac{1}{309}\right)}\)
\(\frac{A}{B}=\frac{1}{309}\)
308/1+307/2+306/3+...+2/307+1/308
=> A= (1+1+... +1) +307/2+306/3+...+1/308
308 số 1
=> A= ( 1+307/2 )+(1+306/3 )+..+(1+1/308) +1
=> A = 309/2 +309/3 +...+ 309/308 +309/309
=> A = 309(1/2+1/3+...+1/309)