a)Chứng minh rằng : 22015-1 chia hết cho 31
b) Tìm các số nguyên tố x,y,z thỏa mãn: xy+1=z
Cho các số nguyên dương x,y,z thỏa mãn x^2+y^2=z^2. chứng minh B=x^3y-xy^3 chia hết cho 7
Cho x,y,z là các số nguyên thỏa mãn (x-y)(y-z)(z-x) = x + y + z.
Chứng minh rằng: (x + y + z) chia hết cho 27.
Cho x,y,z là các số nguyên thỏa mãn (x-y)(y-z)(z-x) = x+y+x.
Chứng minh rằng x+y+z chia hết cho 27.
Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc
Sử dụng tính chất trên ta được :
( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x )
Nếu x ,y, z có cùng số dư khi chia cho 3 =>
x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết )
=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27
,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3
=> ( x -y )(y -z )( z -x ) ko chia hết cho 3
Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2
=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý )
Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y
=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3
1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27
2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27
3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27
Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27
tích nha
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1) Cho A=xy(x+y) + yz(y+z) + zx(z+x) +2xyz với x,y,z là các số nguyên lẻ.
Chứng minh A chia hết cho 8
2) Cho A = a+b+c và B = a3 + (b+2020)3 + (c+2021)3 với a,b,c là các số nguyên. Chứng minh A chia hết cho 3 khi và chỉ khi B chia hết cho 3
3) Cho các số thực x,y,z thảo mãn \(0\le x,y,z\le1\). Chứng minh rằng :
\(\frac{x}{1+x+yz}+\frac{y}{1+y+xz}+\frac{z}{1+z+xy}\le\frac{3}{x+y+z}\)
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
Cho các số thực x, y,z thỏa mãn 0 ≤ x,y,z ≤ 1 . Chứng minh rằng
x + y + z - 2( xy + yz + zx ) + 4xyz ≤ 1
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
Cho x, y, z là các số nguyên thỏa mãn: (x - y)(y - z)(z - x). Chứng minh: x + y + z chia hết cho 27