Cho hai đường tròn tâm O, O1 tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy hai điểm phân biệt B, C khác A. Các đường thẳng BA, CA cắt đường tròn (O1) tại P và Q. Chứng minh PQ// BC
Giải giúp mình với, đang cần gấp, thks <3
Cho hai đường tròn O, O1 tiếp xúc ngoài nhau tại A. Trên đường tròn O lấy hai điểm phân biệt B, C khác A. Các đường thẳng BA, CA cắt đường tròn O1 lần lượt tại P,Q. cm PQ song song BC
Cho hai đường tròn tâm \(O_1,O_2\) tiếp xúc ngoài nhau tại $A$. Trên đường tròn \(\left(O_1\right)\) lấy hai điểm $B$, $C$ phân biệt khác $A$. Các đường thẳng $BA$, $CA$ cắt đường tròn \(\left(O_2\right)\) tại $P$ và $Q$. Chứng minh $PQ$//$BC$.
ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP
xAC=QAy(hai góc đối đỉnh)
theo tính chất của 2 góc được tạo bởi tia tiếp tuyến
=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)
theo tính chất của góc nội tiếp,ta có
=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)
từ (1),(2)=> ABC=APQ
=> QP//BC
Kẻ tiếp tuyến chung tại A của hai đường tròn (O) và (O')
có góc xAC= góc QAy( 2 góc đối đỉnh )
theo tính chất của góc tạo bởi tia tiếp tuyến và dây cung ta có: góc CAx=1/2 sđ cung CA; góc yAQ=1/2 sđ cung AQ
theo tính chất của góc nội tiếp ta có : góc CBA=1/2sđ cung CA; góc APQ=1/2sđ cung AQ
=> góc CBA= góc APQ=> PQ//BC(ĐPCM)
cho 2 (O) và (O1) tiếp xúc ngoài tại A. Trên (O) lấy 2 điểm phân biệt B,C khác A. Các đường thẳng BA ,CA cắt (O1) tại P,Q. Cm PQ song song BC
Cho nửa đường tròn (O) đường kính AB. Lấy M là điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB (H ∈ AB). Trên cùng nửa mặt phang bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O 1 , đường kính AH và tâm O 2 , đường kính BH. Đoạn MA và MB cắt hai nửa đường tròn ( O 1 ) và ( O 2 ) lần lượt tại P và Q. Chứng minh:
a, MH = PQ
b, Các tam giác MPQ và MBA đồng dạng
c, PQ là tiếp tuyến chung của hai đường tròn ( O 1 ) và ( O 2 )
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của O 2
Tương tự PQ cũng là tiếp tuyến ( O 1 )
Bài 1: Cho đường tròn (O1) tiếp xúc trong với đường tròn (O) tại A . Đường kính AB của đường tròn (O) cắt đường tròn (O1) tại điểm thứ hai C khác A . Từ B vẽ tiếp tuyến BP với đường tròn (O1) cắt đường tròn (O) tại Q .Chứng minh AP là phân giác của góc QAB.
Mấy bro giúp mình với T^T
Cho hai đường tròn (O1) và (O2) tiếp xúc ngoài nhau tại điểm I. Vẽ đường tròn (O) tiếp xúc trong với (O1) và (O2) lần lượt tại B và C. Từ điểm I vẽ đường thẳng d vuông góc với O1O2, d cắt cung lớn và cung nhỏ BC của (O) lần lượt tại hai điểm A, Q. Cho AB cắt (O1) tại điểm thứ hai là E. AC cắt (O2) tại điểm thứ hai là D
a) Chứng minh rằng tứ giác BCDE nội tiếp ;
b) Chứng minh rằng OA vuông góc với DE;
c) Vẽ đường kính MN của (O) vuông góc với AI (điểm M nằm trên cung AB không chứa điểm C). Chứng minh rằng ba đường thẳng AQ, BM, CN đồng quy.
(Đề thi HSG cấp tỉnh của Hải Phòng toán 9 năm học 2018 - 2019
Ban co de hsg Hai Phong nam 2019-2020 ko cho mik xin voi
a) dung phuong h
b) Ap dung cau a va bien doi mot chut
c) chua nghi ra
Cho đường tròn tâm (O) và dây cung AB. M là điểm trên AB. Dựng đường tròn (O1) qua A , M và tiếp xúc với (O), đường tròn (O2) qua M , B và tiếp xúc với (O), hai đường tròn này cắt nhau tại điểm thứ hai là N. Chứng minh rằng MNO^=90o.
Cho đường tròn (O) và đường tròn (O') tiếp xúc ngoài với nhau tai A. Trên đường tròn (O) lấy điểm B sao cho ba điểm A, O, B không thẳng hàng. Đường thẳng AB cắt đưởng tròn (O') tại điểm thứ hai là C (C khác A). Chứng minh OB song song với O'C.
Cho hai đường tròn tâm O , O1 tiếp xúc ngoài nhau tại A . Trên đường tròn (O) lấy hai điểm phân biệt B , C khác A. Các đường thẳng BA , CA cắt đường tròn (O1) tại P và Q . Chứng minh PQ // BC .