Tìm tât cả các số nguyên dương n sao cho n2+2 là ước số của n6+206
Tìm tất cả các só nguyên dương n sao cho \(n^2+2\) là ước số của \(n^6+206\)
Có n6+206 có ước là n2+2
=> n6+206 chia hết n2+2
=>(n2+2)(n4-2n2+4)+198 chia hết n2+2
=> n2+2 thuộc Ư(198)={3;6;9;11;18;22;33;66;198} (Do n^2+1 >1)
=> n^2 thuộc {1;4;7;9;16;20;31;64;196}
Mà n thuộc N*
=> n thuộc {1;2;3;4;8;14}
Chúc học tốt Kkk
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
tìm tât cả các số nguyên dương a,b sao cho \(\frac{a^2-2}{ab+2}\)là số nguyên
Ta có \(b\left(a^2-2\right)=a\left(ab+2\right)-2\left(a+b\right)\). Do \(a^2-2\vdots ab+2\) nên \(2\left(a+b\right)\vdots ab+2\to ab+2\le2a+2b\to\left(a-2\right)\left(b-2\right)\le2\).
Với \(a=1\to-\frac{1}{b+2}\in Z\), loại
Với \(a=2\to\frac{4}{2b+2}\in Z\to2b+2=4\to b=1\)
Với \(a=3\to\frac{7}{3b+2}\in Z\to3b+2=7\to\) loại
Với \(a=4\to\frac{14}{4b+2}\in Z\to4b+2=14\to b=3.\)
Với \(a\ge5\to b-2\le\frac{2}{a-2}
đua ha đô kho qua chung
Vậy cặp (a,b) nguyên dương thỏa mãn là (2,1);(4,3)
tìm tất cả các số nguyên dương n sao cho n được viết dưới dạng a^2 +b^2, trong đó a là ước nguyên dương nhỏ nhất của n (a khác 1) và b là một ước nguyên dương nào đó của n
tìm tât cả các số nguyên dương a,b sao cho \(\frac{a^2-2}{ab+2}\) là số nguyên.
Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath
Tìm tất cả các số nguyên dương \(n\) sao cho \(n\) và \(2^n+1\) cùng tập ước nguyên tố.
Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.
Ta gọi số n là số hoàn hảo nếu tổng các ước dương của nó bằng 2n, ví dụ: 6 là số hoàn hảo. Hãy tìm tất cả các số hoàn hảo n sao cho n – 1 và n + 1 là các số nguyên tố.
Cho n là số nguyên dương và m là ước nguyên dương của 2n2
CMR : n2 + m không là số chính phương