Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cát Nguyễn
Xem chi tiết
Diệu Huyền
5 tháng 4 2020 lúc 19:10

\(1^2-2^2+3^2-4^2+..+2017^2-2018^2+2019^2\)

\(=1^2+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2019^2-2018^2\right)\)

\(=1+\left(3+2\right)\left(3-2\right)+\left(5+4\right)\left(5-4\right)+...+\left(2019+2018\right)\left(2019-2018\right)\)

\(=1+2+3+4+5+...+2018+2019\)

\(=\left(1+2019\right).2019\)

\(=4078380\)

Khách vãng lai đã xóa
Trần Thùy Linh
5 tháng 4 2020 lúc 18:54

https://hoc24.vn/hoi-dap/question/954739.html

Làm rồi mà :D

Khách vãng lai đã xóa
Thị Hồng Nguyễn
Xem chi tiết
Thị Hồng Nguyễn
Xem chi tiết
๖ۣۜҪôηɠ•Ҫɦúล
Xem chi tiết
Chillaccino
15 tháng 3 2019 lúc 13:57

1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182 

= 1x2x3x...x2018x(2019 - 1 - 2018)

= 1x2x3x...x2018x0

= 0

Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
Dương Thế Vinh
Xem chi tiết
Ngô Tuấn Anh
Xem chi tiết
Anh2Kar六
25 tháng 8 2021 lúc 11:16

\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)

Khách vãng lai đã xóa
Victorique de Blois
25 tháng 8 2021 lúc 11:32

\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)

\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)

Khách vãng lai đã xóa
Ngô thị huệ
Xem chi tiết
Xyz OLM
18 tháng 2 2020 lúc 22:31

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

Khách vãng lai đã xóa
Nguyễn Thảo Nhi
21 tháng 2 2021 lúc 21:30

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

Khách vãng lai đã xóa