Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 12 2017 lúc 12:30

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

Huyền Đoàn
Xem chi tiết
Phan Quang An
5 tháng 1 2016 lúc 21:28

Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
                      1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau

Nguyễn Công Minh
Xem chi tiết
Mavis
2 tháng 12 2015 lúc 21:12

gọi d là UCLN ( 3n+5, 2n+3 )

=>3n+5 chia hết cho d

=>2n+3 chia hết cho d

=>2.(3n+5) chia hết cho d

=>3.(2n+3) chia hết cho d

=>6n+10 chia hết cho d

=>6n+9 chia hết cho d

=>6n+10-(6n+9) = d

=>6n+10-6n-9 =d

=>      1         = d

=> 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

BÙI BẢO KHÁNH
Xem chi tiết
Lê Song Phương
20 tháng 10 2023 lúc 20:40

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

Nguyễn Thùy Trang
Xem chi tiết
Huỳnh Rạng Đông
26 tháng 1 2017 lúc 9:31

Gọi d là ƯCLN( 2n+3;3n+4)

=> 2n+3 chia hết cho d và 3n+4 chia hết cho d

=> (2n+3) - (3n+4) chia hết cho d

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> (6n+9) - (6n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(2n+3; 3n+4) = 1

Vậy  2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

Nguyễn Thùy Trang
26 tháng 1 2017 lúc 9:24

Các bn trả lời nhanh giùm mình nha.

Trương Thanh Nhân
26 tháng 1 2017 lúc 9:26

quá dễ:

Ta có: gọi ước chung lớn nhất của 2n + 3    và    3n + 4   là d

theo đề, ta lại có:   (2n+3) :   (3n+4) = d

                          3(2n+3) : 2(3n+4) = d

                            (6n+9): (6n + 8)  = d

  Suy ra d = 1

vậy UWCLN của 2n+3 và 3n+4 là 1

Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2017 lúc 3:36

Nguyen Trang Mai Quyen
Xem chi tiết
Nguyễn Nhật Minh
9 tháng 12 2015 lúc 11:11

Gọi  d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d

=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n  +10 - 6n -9  =1 chia hết cho d

=> d =1

Vậy (A;B) =1

Hoàng Thị Thanh Thư
9 tháng 12 2015 lúc 11:15

chung mik la mih ngu nhatv 

Nguyễn Ngọc Diệp
Xem chi tiết
Nguyễn Ngọc Diệp
9 tháng 8 2023 lúc 20:55

giúp mình với😓mình đang vội!

Bảo Khanh Vũ Ngọc
9 tháng 8 2023 lúc 21:00

Chứng minh:

A:5n+2 và 8n+3 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N

B:6n+5 và 8n+4 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N

k biết có giúp được bạn k?

~chúc bạn học tốt~

Pham Sy Lam
Xem chi tiết