Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Phan Hồng Phúc
Xem chi tiết
Lê Song Phương
2 tháng 7 2023 lúc 20:24

\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:

\(\left(m-1\right)x+2\left(x-2\right)=m+1\) 

\(\Leftrightarrow\left(m+1\right)x=m+5\)

 Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\).  \(\Rightarrow x=\dfrac{m+5}{m+1}\)

\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).

Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).

Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)

Lê Song Phương
2 tháng 7 2023 lúc 20:25

Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)

Bùi Đức Anh
Xem chi tiết
Hoàng Bình Minh
Xem chi tiết
Nguyễn Ngọc Thảo
Xem chi tiết
Vũ Nguyễn Hiếu Thảo
22 tháng 9 2017 lúc 22:38

Thêm xy vào 2 vế:

 \(x^2+2xy+y^2=x^2y^2+xy\)(1)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0

xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)

xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)

vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)

Ngô Bình
Xem chi tiết
:vvv
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 9:03

\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)

Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương

\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)