tìm a,b biết rằng f(x) =x^4+1.Chia hết cho đa thức x^2+ax+b
tìm a,b biết rằng f(x) =x4+1.Chia hết cho đa thức x2+ax+b
Đặt f(x)=\(\left(x^2+ax+b\right)\left(x^2+mx+n\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\sqrt{2}\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-\sqrt{2}\\b=1\end{cases}}\)
tìm a,b để đa thức P(x)=x^4 - 6x^3+7x^2+ax+b chia hết cho đa thức f(x)=x+1 và chia cho đa thức g(x)=x+2 thì có dư là 12
-Áp dụng định lí Bezout:
\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)
\(\Rightarrow1+6+7-a+b=0\)
\(\Rightarrow a-b=14\left(1\right)\)
\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)
\(\Rightarrow16+48+28-2a+b=12\)
\(\Rightarrow2a-b=80\left(2\right)\)
-Từ (1) và (2) suy ra: \(a=66;b=52\)
Tìm a, b để đa thức f(x)=(x^4)+ax+b chia hết cho đa thức g(x)=(x^2)-4.
Giả sử : x2 - 4 = 0 \(\Rightarrow\)x2 - 22 = 0\(\Rightarrow\)( x - 2 )( x + 2 ) = 0 \(\Rightarrow\)x = 2 và x = - 2 nên x có 2 nghiêm là x = 2 và x = - 2
Ta có :
f( 2 ) = 24 + 2a + b = 16 + 2a + b
f( - 2 ) = ( - 2 )4 - 2a + b = 16 - 2a + b
Để f( x ) \(⋮\)g( x ) thì 16 + 2a + b = 0 ( 1 )và 16 - 2a + b = 0 ( 2 )
Ta lấy ( 1 ) - ( 2 ) ta được : 32 + 2b = 0
\(\Rightarrow\)2b = - 32
\(\Rightarrow\)b = - 16
Thay b = - 16 vào ( 2 ) ta được :
16 - 2a - 16 = 0
\(\Rightarrow\)- 2a = 0
\(\Rightarrow\)a = 0
Vậy : a = 0 và b = - 16
tìm a và b để đa thức f(x) chia hết cho g(x) biết: f(x)=x^4+x^3+ax^2+4x+b và g(x)=x^2-2x+2
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
Cho đa thức f(x)=x4+ax3+bx-1. Tìm a,b để đa thức f(x) chia hết cho x2-3x+2
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
1, Tìm các số a,b sao cho f(x)=x^4+ax^4+bx-1 chia hết cho đa thức x^2-3x+2
\(x^2-3x+2\)
\(=x^2-2x-x+2\)
\(=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
Để \(f\left(x\right)=\left(x^4+ax^4+bx-1\right)⋮\left(x^2-3x+2\right)\)thì :
\(f\left(x\right)=\left(x^4+ax^4+bx-1\right)=\left(x^2-3x+2\right)\cdot Q\)
\(\Leftrightarrow x^4+ax^4+bx-1=\left(x-2\right)\left(x-1\right)\cdot Q\)
Vì đẳng thức trên đúng với mọi x, do đó :
+) Đặt x = 2 ta có pt :
\(2^4+a\cdot2^4+b\cdot2-1=\left(2-2\right)\left(2-1\right)\cdot Q\)
\(\Leftrightarrow16a+2b+15=0\)
\(\Leftrightarrow16a+2b=-15\)(1)
+) Đặt x = 1 ta có pt :
\(1^4+a\cdot1^4+b\cdot1-1=\left(1-2\right)\left(1-1\right)\cdot Q\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)(2)
Thay (2) vào (1) ta có :
\(16\cdot\left(-b\right)+2b=-15\)
\(\Leftrightarrow-14b=-15\)
\(\Leftrightarrow b=\frac{15}{14}\)
\(\Rightarrow a=\frac{-15}{14}\)
Vậy....
Tìm a, b để đa thức f(x) chia hết cho đa thức g(x), biết: f(x)=2x3-3x2+ax+b; g(x)=x2-x+2
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).