Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phúc Nguyễn
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Đỗ Thảo
1 tháng 9 2021 lúc 19:20

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

Qasalt
Xem chi tiết
Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
Cô gái thất thường (Ánh...
Xem chi tiết
Xem chi tiết
Nhất Chu Phạm
Xem chi tiết
Akai Haruma
18 tháng 9 2023 lúc 0:34

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

Akai Haruma
18 tháng 9 2023 lúc 0:35

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

Akai Haruma
18 tháng 9 2023 lúc 0:36

Bài 3:

$x-4\sqrt{x}+10$

ĐKXĐ: $x\geq 0$

Ta có: $x-4\sqrt{x}+10=(x-4\sqrt{x}+4)+6=(\sqrt{x}-2)^2+6\geq 0+6=6$

Vậy gtnn của biểu thức là $6$. Giá trị này đạt được khi $\sqrt{x}-2=0\Leftrightarrow x=4$

 

nguyen ngoc khanh linh
Xem chi tiết
Trần Thanh Phương
25 tháng 8 2019 lúc 14:40

Lời giải :

\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x+1\right|+\left|x-1\right|\)

\(=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)\left(1-x\right)\ge0\Leftrightarrow-1\le x\le1\)

Hoàng tử của mít
Xem chi tiết
lý canh hy
14 tháng 10 2018 lúc 21:15

Ta có BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Áp dụng vào bài toán ta có

\(\sqrt{x^2+1}+\sqrt{x^2-2x+5}=\sqrt{x^2+1^2}+\sqrt{\left(1-x\right)^2+2^2}\)

\(\ge\sqrt{\left(x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{10}\)

Dấu "=" xảy ra khi \(\frac{x}{1-x}=\frac{1}{2}\Rightarrow x=\frac{1}{3}\)