Cho M=(-a+b)-(b+c-a)+(c-a) trong đó b,c thuộc Z còn a là một số nguyên âm.Chứng minh rằng biểu thức M luôn luôn dương.
Cho M=(-a+b)-(b+c-a)+(c-a) trong đó b,c thuộc Z còn a là một số nguyên âm.CMR biểu thức M luôn luôn dương.
M=(-a+b)-(b+c-a)+(c-a) = -a+b-b-c+a+c-a=-a
Vì a là một số nguyên âm nên -a là một số nguyên dương => M=-a>0
Vậy M luôn luôn dương.
Cho m=(-a+b)-(b+c-a)+(c-a),trong đó b,c thuộc tập Z ,a là số nguyên âm.Chứng minh rằng m luôn dương
Ta có:
-(a+b)-(b+c-a)+(c-a)
=-a-b-b-c+a+c-a ( phá ngoặc theo qui tắc dấu ngoặc đã học )
=[(-a+a)-c+c]-b-b-a ( đổi vị trí các số hạng)
=0-a-b-b
=-a-2b
Vì a là số âm nên -a là số dương và lớn hơn 0.
Còn tiếp chắc đề sai nên tớ thui zậy ♥
Cho M= -(a+b)+(-a+b)+(-c).Trong đó c là số nguyên âm.Chứng minh rằng biểu thức M luôn luôn dương
M=-a-b-a+b-c=-c
vi c nguyen am suy ra c<0
suy ra -c>0
suy ra M luon duong (dpcm)
CMR; M=(-a+b) -(b+c-a) +(c-a)
trong đó b,c thuộc Z còn a là 1 số nguyên âm.chứng minh rằng biểu thức M luôn luôn dương.
GIẢI GIÚP MÌNH VỚI NHÉ!!!!!!!^^^
Cho biểu thức \(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
tìm các số nguyên dương a,b,c,d sao cho biểu thức B có giá trị là một số nguyên
\(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
Có phải \(B=\frac{a+b}{a+c}+\frac{b+a}{b+d}+\frac{c+b}{c+d}+\frac{d+c}{d+a}\)không?
\(B=\frac{a}{b+a+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}\)
Cho biểu thức
\(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
tìm các số nguyên dương a,b,c,d sao cho biểu thức B có giá trị là một số nguyên
Cho biểu thức : B = 6: n -3 , n E Z. Tìm các giá trị nguyên n để:
a) biểu thức B là một phân số
b)biểu thức B không phải là phân số
c)biểu thức B có giá trị nguyên
Cho biểu thức :
A = a (a+1) (a+2) (a+4) (a+5) (a+6) + 36
Chứng minh rằng với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương.
\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)
\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)
\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)
Đặt t = a2 +6a. Khi đó phương trình trở thành:
\(A=t\left(t+8\right)\left(t+5\right)+36\)
\(A=t\left(t^2+13t+40\right)+36\)
\(A=t^3+13t^2+40t+36\)
\(A=t^3+2t^2+11t^2+22t+18t+36\)
\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)
\(A=\left(t+2\right)\left(t^2+11t+18\right)\)
\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)
\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)
\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)
\(A=\left(t+2\right)^2\left(t+9\right)\)
Thế t = a2 + 6a vào A ta được:
\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)
\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)
\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)
Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương
Câu hỏi nhóm BGS số 3 - lớp 8:
Cho 4 số nguyên dương a,b,c,d trong đó tổng ba số bất kì chia cho số còn lại đều có thương là một số nguyên khác 1. Chứng minh rằng trong bốn số a, b, c, d tồn tại hai số bằng nhau.