Tìm n, biết
\(\frac{\left(n-2\right).180^o}{n}\)=144
Tìm y biết:
\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)
2,Tìm tất cả số tự nhiên n sao cho:
b, \(2^{n+3}.2^n=144\)
d, \(^{\left(n^{54}\right)^2}=n\)
giải giúp mk với
1/
\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)
=> y/ 3 - 5 = 0 hoặc y/3 - 5 = 1
=> y/3 = 5 hoặc y/3 = 6
=> y = 15 hoặc y = 18
2/
d) \(\left(n^{54}\right)^2=n\)
=> n = 0 hoặc n=1
Chứng minh rằng số đo góc của n-giác đều là
\(\frac{\left(n-2\right).180^o}{n}\)
tai vi cu n giac tao thanh n-2 tam giac
Chứng minh rằng số đo góc của hình n-giác đều là ( n- 2). 1800
Cứu mình với!
a/ Cho \(\frac{a}{b}=\frac{60}{108}\)sao cho [a;b] = 180. Tìm phân số đó.
b/ Chứng minh \(\frac{1.3.5.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....\left(2n\right)}=\frac{1}{2^n}\)(n \(\in\)N*)
Các bạn giải từng câu một cũng dc nhé
Tìm n thuộc N biết \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{4032}{2017}\)
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
Tìm n biết:
\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{2013}{2014}\)
Với \(n\in\)N*
Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html
chịu thôi bạn ạ ko hiểu gì hết
CM: \(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+..........+\frac{2n+1}{n^2.\left(n+1\right)^2}\)<1
Ta thấy \(\frac{3}{4}=\frac{1}{1^2}-\frac{1}{2^2};\frac{5}{36}=\frac{1}{2^2}-\frac{1}{3^2};...\)
Tổng quát: \(\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
Đặt \(A=\frac{3}{4}+\frac{5}{36}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(\Rightarrow A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(A=1-\frac{1}{\left(n+1\right)^2}\)
Do \(\left(n+1\right)^2>0\Rightarrow A< 1.\)
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
Chứng minh rằng
\(G=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+....+\frac{2n+1}{n^2.\left(n+1\right)^2}
\(G=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+....+\frac{2n+1}{n^2.\left(n+1\right)^2}=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{2n+1}{n^2\left(n^2+2n+1\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{n^2+2n+1}\)
\(=1-\frac{1}{n^2+n+1}\left(n>0\right)\Rightarrow1-\frac{1}{n^2+n+1}