Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi hong tham
Xem chi tiết
Vương Quốc Anh
2 tháng 1 2016 lúc 17:13

a) x=3

   y=\(\frac{3}{2}\)

b) x=0,4082482905

   y=-0,7071067812

Trình bày em không biết vì em mới học lớp 7. kết quả đó là của máy tính fx-570ES PLUS ra

Tạ Xuân Hào
2 tháng 1 2016 lúc 18:20

1/2x-1/3y=1

5x-8y=3

Ta sẽ biến đổi để đưa hệ về các hệ số của cùng 1 ẩn .ta nhan hệ 1 với 5 va hệ 2 voi 1/2.ta có hệ mới

5/2x-1/3y=1

5/2x-8y=3

=> dùng phương pháp thế rút x theo y rồi ra

x:=3;

y:=3/2;

b)

xxta có hệ

5\(\sqrt{3}\)x+y=2\(\sqrt{2}\)

\(\sqrt{6}\)x-\(\sqrt{2}\)y=2;

=>tiếp tục dùng phương pháp thế rút y theo x như phần a

ta có:x=0,4082482950

         y=-0,7071067812

 

✰ɮạċɦ☠ℌổ✰
Xem chi tiết
Võ Văn huy
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
8 tháng 3 2020 lúc 16:07

<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{4}{y}=\frac{2}{3}\\\frac{2}{x}-\frac{3}{y}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{7}{y}=\frac{5}{12}\\\frac{1}{x}+\frac{2}{y}=\frac{1}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{14}{3}\\y=\frac{84}{5}\end{cases}}\)

Khách vãng lai đã xóa
Nhung Hoàng
Xem chi tiết
Trần Thùy Linh
6 tháng 4 2020 lúc 11:09

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{3}=\frac{7}{3}\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{6}+\frac{y}{6}=\frac{7}{6}\left(1\right)\\\frac{11x}{12}-\frac{y}{6}=1\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2) ta được

\(\frac{13}{12}x=\frac{13}{6}\Rightarrow x=2\Rightarrow y=5\)

Vậy.............

Khách vãng lai đã xóa
đề bài khó wá
6 tháng 4 2020 lúc 11:08

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\8x-2y+3x=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13x=26\\y=7-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=14\\11x-2y=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

Vậy ....

Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
Thầy Giáo Toán
7 tháng 3 2016 lúc 22:07

Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)

Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\)   Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình  \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được 

\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)

Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
 

Hồ Thị Hoài An
7 tháng 3 2016 lúc 21:40

bài nhìn kinh khủng thế :3

phan tuấn anh
7 tháng 3 2016 lúc 21:44

khủng mới hỏi chứ 

phan tuấn anh
Xem chi tiết
Trần Đức Thắng
14 tháng 3 2016 lúc 21:22

Hệ <=> \(\int^{1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}}\left(1\right)}_{1-\frac{3}{x+3y}=\frac{4}{\sqrt{7y}}\left(2\right)}\)

Lấy (1) cộng (2) ta có pt : \(2=\frac{2}{\sqrt{x}}+\frac{4}{\sqrt{7y}}\) 

Lấy (1) trừ (2) ta có : \(\frac{6}{x+3y}=\frac{2}{\sqrt{x}}-\frac{4}{\sqrt{7y}}\)

Nhân vế với vế của 2 pt ta đc :

\(\frac{12}{x+3y}=\left(\frac{2}{\sqrt{x}}+\frac{4}{\sqrt{7y}}\right)\left(\frac{2}{\sqrt{x}}-\frac{4}{\sqrt{7y}}\right)\)

<=> \(\frac{12}{x+3y}=\frac{4}{x}-\frac{16}{7y}\Leftrightarrow\frac{3}{x+3y}=\frac{1}{x}-\frac{4}{7y}\Leftrightarrow\frac{3}{x+3y}=\frac{7y-4x}{7xy}\)

Nhân chéo =>  pt đẳng cấp 

Nguyễn Tuấn
14 tháng 3 2016 lúc 21:02

có đáp án ko

Nông Yến Nhi
Xem chi tiết
Bùi Thế Hào
17 tháng 5 2017 lúc 17:09

\(\hept{\begin{cases}\frac{2}{x+y}+\frac{1}{x-y}=3\\\frac{1}{x+y}-\frac{3}{x-y}=1\end{cases}}\)

Đặt: \(u=\frac{1}{x+y};v=\frac{1}{x-y}\). Ta có: 

\(\hept{\begin{cases}2u+v=3\\u-3v=1\end{cases}}\)

\(\hept{\begin{cases}2u+v=3\\2u-6v=2\end{cases}}\)<=> 7v=1 => \(v=\frac{1}{7};u=\frac{10}{7}\)

\(< =>\hept{\begin{cases}\frac{1}{x+y}=\frac{10}{7}\\\frac{1}{x-y}=\frac{1}{7}\end{cases}}\) <=> \(\hept{\begin{cases}10x+10y=7\\x-y=7\end{cases}}\)<=> 10(y+7)+10y=7

<=> 20y+70=7

=> \(y=-\frac{63}{20}\)\(x=\frac{77}{20}\)

Chibi
17 tháng 5 2017 lúc 16:52

a = \(\frac{1}{x+y}\)

b = \(\frac{1}{x-y}\)

=>

\(\hept{\begin{cases}2a+b=3\\a-3b=1\end{cases}}\)

<=>

\(\hept{\begin{cases}2a+b=3\\2a-6b=2\end{cases}}\)

Trừ 2 vế PT

=> 7b = 1

=> b = 1/7

=> a = 10/7

=>

\(\hept{\begin{cases}x+y=\frac{7}{10}\\x-y=7\end{cases}}\)

<=>

\(\hept{\begin{cases}x=\frac{77}{20}\\y=-\frac{63}{20}\end{cases}}\)

CT Hà Nhi
Xem chi tiết
CT Hà Nhi
7 tháng 4 2020 lúc 15:36

với x, y,z>0

Khách vãng lai đã xóa
Thanh Tùng DZ
8 tháng 4 2020 lúc 21:21

Phương trình ( 2 ) \(\Leftrightarrow\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(3x+2y+z\right)=36\)

\(\Leftrightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)=22\)

Áp dụng BĐT Cô-si, ta có : 

\(6\left(\frac{x}{y}+\frac{y}{x}\right)\ge12;3\left(\frac{x}{z}+\frac{z}{x}\right)\ge6;2\left(\frac{z}{y}+\frac{y}{z}\right)\ge4\)

\(\Rightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)\ge22\)

Dấu "=" xảy ra khi x = y = z

khi đó : ( 1 ) \(\Leftrightarrow x^3+x^2+x-14=0\)\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)

\(\Leftrightarrow x=2\)

Vậy hệ phương trình có nghiệm duy nhất x = y = z = 2

Khách vãng lai đã xóa
Thanh Tùng DZ
17 tháng 4 2020 lúc 20:06

ủa t trả lời r mà

Khách vãng lai đã xóa
Võ Văn huy
Xem chi tiết
Kiệt Nguyễn
8 tháng 3 2020 lúc 20:05

Đặt \(x+1=u;y-2=v\)

Hệ trở thành \(\hept{\begin{cases}\frac{2}{u}+\frac{1}{v}=\frac{1}{3}\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{u}+\frac{2}{v}=\frac{2}{3}\left(1\right)\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\left(2\right)\end{cases}}\)

Lấy (1) - (2), ta được\(\frac{1}{u}=\frac{7}{15}\Leftrightarrow u=\frac{15}{7}\)

\(\Rightarrow x=\frac{15}{7}-1=\frac{8}{7}\)

Từ đó tính được \(y=\frac{1}{3}\)

Vậy hệ có 1 nghiệm \(\left(\frac{8}{7};\frac{1}{3}\right)\)

Khách vãng lai đã xóa
Thám Tử THCS Nguyễn Hiếu
8 tháng 3 2020 lúc 16:23

<=> \(\hept{\begin{cases}\frac{4}{x+1}+\frac{2}{y-2}=\frac{2}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{x+1}=\frac{7}{15}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{8}{7}\\y=\frac{7}{5}\end{cases}}\)

Khách vãng lai đã xóa