số tự nhiên n>3 để (n+5) chia hết cho (n-2) là
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
2) Chứng minh rằng : a) 92021 – 22022 là số chia hết cho 5 b) N.(N – 1) là số chia hết cho 2 với N là số tự nhiên c) 34 + 35 + 36 + 37 + 38 + 39 là số chia hết cho 13 d) Tổng 5 số tự nhiên liên tiếp là số chia hết cho 5 Hướng dẫn d: Gọi n, n + 1, n + 2, n + 3 va n + 4 là 5 số tự nhiên liên tiếp.
Số tự nhiên n > 3 để (n+5) chia hết cho (n-2 ) là bao nhiêu ?
Ta có: (n + 5) chia hết cho (n - 2)
=> (n - 2) + 7 chia hết cho (n - 2)
=> 7 chia hết cho (n - 2)
=> (n - 2) thuộc Ư(7)
Mà Ư(7) = {1; -1; 7; -7}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 7 => n = 9
n - 2 = -7 => n = -5
Mà n > 3
Vậy n = 9.
Câu 1: Tìm số tự nhiên x sao cho \(\frac{5}{x+1}\) là số tự nhiên
Câu 2: Tìm số tự nhiên n để
a) 3 chia hết n + 2
b) n+1 chia hết cho 2 và n 2 chia hết n +1
c) 2n chia hết n - 1
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
câu 1:số tự nhiên n thỏa mãn 3n+8 chia hết cho n+2 là n=
câu 2:tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
1) Tìm số tự nhiên n khác 1 để 3n +5 chia hết cho n.
2) Tìm số tự nhiên nhỏ nhất x khác 0 biết rằng (x+5) chia hết cho 5 ; (x-12) chia hết cho 6 và (14+x) chia hết cho 7
3) Số nguyên tố đôi một là gì?
a.Tìm các số tự nhiên x,y sao cho ( 2.x +1 ).( y-5 )=12
b.Tìm số tự nhiên x,y sao cho 4.n -5 chia hết cho 2.n-1
c.Tìm số tự nhiên n đê: 6.n+3 chia hết cho 3.n+6
d.Tìm các số tự nhiên n sao cho 5.n+45 chia hết cho n+3