Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Quyền
Xem chi tiết
Lò Huy Hoàng
Xem chi tiết
Lò Huy Hoàng
27 tháng 3 2020 lúc 16:51

các bạn trả lời giúp mik vs

Khách vãng lai đã xóa
Nguyễn Đức An
Xem chi tiết
Nobi7Nobita
28 tháng 3 2020 lúc 19:40

a) Xét hai tam giác vuông ΔBEF và ΔBAC

có:

BF=BC

(do ΔBFC

cân đỉnh B)

ˆB

chung

⇒ΔBEF=ΔBAC

(cạnh huyền-góc nhọn).

b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA

(hai tương ứng)

Mà ΔBFC

cân đỉnh B nên: ˆBFC=ˆBCF

ˆBFC−ˆBFE=ˆBCF−ˆBCA

⇒ˆEFC=ˆACF

hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC

Xét ΔBFD

và ΔBCD

có:

BF=BC

(giả thiết)

BD

chung

DF=DC

(cmt)

⇒ΔBFD=ΔBCD

(c.c.c)

⇒ˆFBD=ˆCBD

(hai góc tương ứng)

⇒BD

là phân giác ˆFBC

.

c) ΔBEF=ΔBAC⇒BE=BA

⇒BF−BA=BC−BE

hay AF=EC

Xét ΔAFM

và ΔECM

có:

FM=CM

(do M là trung điểm cạnh FC)

ˆAFM=ˆECM

(giả thiết)

AF=EC

(cmt)

⇒ΔAFM=ΔECM

(c.g.c)

⇒MA=ME

lại có BA=BE⇒MB là trung trực của AE

⇒MB⊥AE

.

imagerotate

Khách vãng lai đã xóa
Huy Hoang
17 tháng 4 2020 lúc 9:48

B F C A M E D

a) Xét 2 tam giác BEF và BAC có :

BF = BC ( Tam giác BCF cân tại B )

Góc B chung

=> Tam giác BEF = BAC ( ch-gn )

b) Vì tam giác BEF = BAC ( cmt )

-> Góc BFE = góc BCA ( 2 góc t/ứng )

Mà tam giác BCF cân tại B

=> BFC = BCF 

BFC - BFE = BCF - BCA 

 \(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)

=> Tam giác DFC cân tại đỉnh D

=> DF = DC

Xét tam giác BFD và BCD có :

BF = BC ( gt )

BD chung

DF = DC ( cmt )

=> = nhau ( c.c.c)

=> FBD = CBD ( 2 góc t/ứng )

=> BD là tia phân giác của góc ABC

c) Vì tam giác BEF = BAC 

=> BE = BA

=> BF - BA = BC - BE hay AF = EC

Xét tam giác AFM và ECM có :

FM = CM ( do M là trg điểm FC )

AFM = ECM ( gt )

AF = EC ( cmt )

=> = nhau ( c.g.c )

=> MA = ME lại có BA = BE

=> MB là trg trực của AE

=> BM vuông góc AE

Khách vãng lai đã xóa
Nguyễn Hoàng Lân
Xem chi tiết

Bài làm

B F C A B M D

a) Xét tam giác BAC và tam giác BEF có:

^BAC = ^BEF ( = 90o )

cạnh huyền BC = BF 

góc nhọn: ^B chung.

=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )

b) Ta có: ^BFD + ^DFC = ^BFC 

^BCA + ^ACF = ^BCF

hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )

^BCF = ^BFC 

=> ^DFC = ^DCF 

=> Tam giác DFC cân tại D

=> DF = DC

Xét tam giác BDF và tam giác BDC có:

BF = BC

DF = DC

BD chung

=> Tam giác BDF = tam giác BDC

=> ^FBD = ^CBD

=> BD là tia phân giác của góc FBC

c) Vì Tam giác FBC cân tại B

mà BM trung tuyến

=> BM là đường cao

=> BM vuông góc với FC

Vì AB = BE ( Do tam giác BAC = tam giác BFE )

=> Tam giác ABE cân tại B

=> ^ABE = ( 180o - ^FBC )/2                       (1) 

Vì Tam giác BFC cân tại B

=> ^BFC = ( 180o - ^FBC )/2                       (2)

Từ (1) và (2) => ^ABE = ^BFC 

Mà hai góc này vị trí đồng vị

=> AE // FC

Mà BM vuông góc FC

=> BM vuông góc với AC ( đpcm )

# Học tốt #

Khách vãng lai đã xóa
linh dj
Xem chi tiết
Nguyễn Kim Hoàn
Xem chi tiết
Nguyễn Kim Hoàn
Xem chi tiết
alolemondayy
Xem chi tiết
Nguyễn Nhật Phương
28 tháng 3 2020 lúc 9:37

Đáp án:

 a) Xét ΔBEF và ΔBAC có:

+) BF=BC( vì ΔBFC cân tại B)

+) ∠B chung

+) ∠A=∠E=90 độ(gt)

⇒ΔBEF=ΔBAC (Cạnh huyền-góc nhọn)

b)Xét ΔBDF và ΔBDC có:

+) BD chung

+) BF=BC( vì ΔBFC cân tại B)

+)∠BFE=∠BCA( vì ΔBEF=ΔBAC)

⇒ΔBDF=ΔBDC(c-g-c)

⇒∠FBD=∠CBD(hai góc tương ứng bằng nhau)

⇒BD là tia phân giác ∠ABC

c) Ta có: M là trung điểm của FC nên BM vừa là trung tuyến vừa là đường cao của Δ cân BFC

⇒BM⊥FC     (1)

Vì ΔBEF=ΔBAC(câu a)⇒BA=BE(hai cạnh tương ứng bằng nhau)

⇒ΔABE cân tại E⇒∠BAE=∠BEA

⇒∠BAE=180 độ-góc B chia 2        (2)

Mà ΔBFC cân tại B(gt)⇒∠BFC=∠BCF

⇒∠BFC=180 độ-góc B chia 2    (3)

Từ (2), (3) suy ra ∠BAE=∠BFC. Mà 2 góc này ở vị trí đồng vị⇒ AE║FC    (4)

Từ (1) và (4) ⇒ BM⊥AE

Khách vãng lai đã xóa
Phạm Thùy Dung
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
30 tháng 3 2020 lúc 14:56

a ) Xét 2 tam giác vuông \(\Delta BEF\) và \(\Delta BAC\) có : 

\(BF=BC\) ( do \(\Delta BFC\) cân đỉnh B ) 

\(\widehat{B}\) : chung 

\(\Rightarrow\Delta BEF=\Delta BAC\)  (cạnh huyền-góc nhọn).

b ) Theo câu a ) ta có : \(\Delta BEF=\Delta BAC\) \(\Rightarrow\widehat{BFE}=\widehat{BCA}\) (hai góc tương ứng)

Mà \(\Delta BFC\) cân đỉnh B nên : \(\widehat{BFC}=\widehat{BCF}\)

\(\widehat{BFC}-\widehat{BFE}=\widehat{BCF}-\widehat{BCA}\)

\(\Rightarrow\widehat{EFC\:}=\widehat{ACF}\)

Hay \(\widehat{DFC}=\widehat{DCF}\) \(\Rightarrow\Delta DFC\) cân đỉnh D \(\Rightarrow DF=DC\)

Xét \(\Delta BFD\) và \(\Delta BCD\) có : 

\(BF=BC\left(gt\right)\)

\(BD\) : chung 

\(DF=DC\left(cmt\right)\)

\(\Rightarrow\Delta BFD=\Delta BCD\left(c.c.c\right)\)

\(\Rightarrow\widehat{FBD}=\widehat{CBD}\) (hai góc tương ứng)

\(\Rightarrow BD\) là phân giác của \(\widehat{FBC}\)

c ) Ta có \(\Delta BEF=\Delta BAC\)( câu a ) 

\(\Rightarrow BE=BA\) ( 2 cạnh tương ứng )

\(\Rightarrow BF-BA=BC-BE\) hay AF = EC 

Xét \(\Delta AFM\)và \(\Delta ECM\) có : 

\(FM=CM\) ( vì M là trung điểm cạnh FC ) 

\(\widehat{AFM}=\widehat{ECM}\left(gt\right)\)

AF = EC ( cmt ) 

=> \(\Delta AFM=\Delta ECM\left(c.g.c\right)\)

\(\Rightarrow MA=ME\) lại có BA = BE \(\Rightarrow MB\) là trung trực của AE 

\(\Rightarrow MB\perp AE\) ( đpcm ) 

Khách vãng lai đã xóa
Phạm Thùy Dung
2 tháng 4 2020 lúc 15:47

Thanks bạn !! 

Khách vãng lai đã xóa