Tìm GTLN của biểu thức: A=2020-lx-2013l-lx-2014l-lx-2015l
Tìm GTLN của biểu thức: A=2020-lx-2013l+lx-2014l-+x-2015l
Tìm GTNN của
a, H=lx-1l +lx-2l +...+lx-100l
b, G=lx-2013l +lx-2014l +lx-2015l
Tìm x, y biết rằng:
lx-2013l+lx-2014l+ly-2015l+lx-2016l=3
Bổ đề (I): Cho 2 số thực a, b thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html
Quay trở lại giải bài toán ban đầu.
Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)
Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)
Thử lại thấy thoả mãn.
Vậy x = 2014, y = 2015.
\(\left(x;y\right)\in\left\{\left(2014;2015\right)\right\}\)
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|+\left|y-2015\right|=3\)
Ta có +) \(\left|x-2013\right|+\left|2016-x\right|\ge\left|x-2013+2016-x\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2013\right)\left(2016-x\right)\ge0\Leftrightarrow2013\le x\le2016\)
+) \(\left|x-2014\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow x-2014=0\Leftrightarrow x=2014\)
+) \(\left|y-2015\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y-2015=0\Leftrightarrow y=2015\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\ge3\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\\x=2014\\y=2015\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)
Cho biểu thức A=\(\frac{2016}{lx-2015l+lx-2013l}\)
của A và tìm tất cà số nguyên x để A đặt GTLN
Tim GTNN cua:
A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l
A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l
= |x-2014| + |2017 - x| + |x-2015| + |2016-x| >= |x-2014+2017-x| + |x-2015+2016-x|
= 4.
Dấu "=" xảy ra <=> (x-2014)(2017-x) >=0 và (x-2015)(2016-x) >= 0
<=> \(\hept{\begin{cases}\orbr{\begin{cases}\hept{\begin{cases}x\ge2014\\x\le2017\end{cases}}\\\hept{\begin{cases}x\le2014\\x\ge2017\end{cases}\left(kxảyra\right)}\end{cases}}\\\orbr{\begin{cases}\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\\\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}\left(kxảyra\right)}\end{cases}}\end{cases}}\)
=> \(2015\le x\le2016\)
Vậy Min A = 4 khi \(2015\le x\le2016\).
Tim GTNN cua:A = l2x-2014l+lx-2015l
\(A=\left|2x-2014\right|+\left|x-2015\right|\)
\(A=\left|2x-2014\right|+\left|2015-x\right|\ge\left|2x-2014+2015-x\right|=\left|x+1\right|=x+1\)
\(\Rightarrow A\ge x+1\)
Dấu '' = '' xảy ra khi và chỉ khi
\(\left(2x-2014\right)\left(2015-x\right)=0\)
\(\Leftrightarrow1007\le x\le2015\)
Vậy ..............
P/s : sai thì bỏ qua nha!
ơ sao bài này ko ra MIN là số nhỉ
Ta có :
\(\left|2x-2014\right|+\left|x-2015\right|=\left|2x-2014\right|+\left|2015-x\right|\)
Áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\), ta có :
\(A=\left|2x-2014\right|+\left|2015-x\right|\ge\left|2x-2014+2015-x\right|=\left|x+1\right|=x+1\)
Hay \(A\ge x+1\)
\(\Rightarrow MinA=x+1\Leftrightarrow\left(2x-2014\right)\left(x-2015\right)=0\)
\(\Leftrightarrow1007\le x\le2015\)
Vậy ...................
tìm biết:lx+1l+lx+2l+lx+3l+..+lx+2014l=2015x
|x+1|+|x+2|+......+|x+2014|=2015x
Vì |x+1| \(\ge\) 0;|x+2| \(\ge\) 0;.....;|x+2014| \(\ge\) 0 (với mọi x)
=>|x+1|+|x+2|+......+|x+2014| \(\ge\) 0 (với mọi x)
Mà |x+1|+|x+2|+.....+|x+2014|=2015x
=>2015x \(\ge\) 0=>x \(\ge\) 0=>x+1>0;x+2>0;....;x+2014>0
Do đó |x+1|=x+1;|x+2|=x+2;.....;|x+2014|=x+2014
Ta có:(x+1)+(x+2)+.....+(x+2014)=2015x
=>(x+x+....+x)+(1+2+....+2014)=2015x
=>2014x + \(\frac{2014.\left(2014+1\right)}{2}\) =2015x
=>x=2029105
ai giúp em với
tìm GTLN của \(A=\frac{2026}{lx-2013l+2}\)
tìm giá trị nhỏ nhất của A=lx-2014l+lx+1l
giúp mình với