Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Bảo Trân
Xem chi tiết
Ninh Thị Trà My
9 tháng 11 2023 lúc 22:44

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)

Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
Spectre
2 tháng 7 2017 lúc 18:03

ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân 
=> AH = BH (1) 
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30* 
=> AH = AC/2 => AC = 2AH 
BC = CH + BH = 4 => CH = 4 - BH (2) 
(1) và (2) => CH = 4 - AH 
AC^2 = CH^2 + AH^2 
4AH^2 = (4 - AH)^2 + AH^2 
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2 
<=> 2AH^2 + 8AH - 16 = 0 
<=> AH^2 + 4AH - 8 = 0 
=> AH = 2(√3 -1) 
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3) 
=> AB = 4√(2 - √3) 
AC = 2AH = 4(√3 -1)

Spectre
2 tháng 7 2017 lúc 18:05

bạn nên nhớ 2 công thức sau: 

+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB. 

+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB. 

Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó).. 

Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)² 

= BH² + AH² + AC² - 2.AH.AC 

= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH) 

= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm) 

Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^

Sam Sam
2 tháng 7 2017 lúc 19:36

Cảm ơn bạn nhìu nha <3

Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
alan walker
2 tháng 7 2017 lúc 18:20

ko biết

:))

k

Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết