Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Huyền Trang
Xem chi tiết
Thu HIền
Xem chi tiết
Thục Trinh
22 tháng 4 2019 lúc 6:03

Sửa đề: \(\frac{x-3}{2018}\rightarrow\frac{x-3}{2016}\)

\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)

\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)

\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)

\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)

\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

\(\Leftrightarrow x-2019=0\) (Vì \(\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)\ne0\) )

\(\Leftrightarrow x=2019\)

Vậy \(S=\left\{2019\right\}\)

Nguyễn Cảnh Kyf
Xem chi tiết
nguyen dai vu
Xem chi tiết
Huỳnh Thị Minh Huyền
8 tháng 7 2017 lúc 12:35

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

Một cô gái xì tin
1 tháng 8 2017 lúc 16:36

khó lắm

bây h thì bạn giải đc chưa

nguyen dai vu
2 tháng 8 2017 lúc 21:14

Cảm ơn bạn rất nhiều mình đã hiểu rồi 

Chúc bạn học tốt nhé

❤Firei_Star❤
Xem chi tiết
❤Firei_Star❤
7 tháng 8 2018 lúc 8:55

help me

Phùng Minh Quân
7 tháng 8 2018 lúc 14:24

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
7 tháng 8 2018 lúc 14:35

\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)

\(\Leftrightarrow\)\(x+1=2019\)

\(\Leftrightarrow\)\(x=2019-1\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

Đào Trần Tuấn Anh
Xem chi tiết
Nguyễn Hưng Phát
22 tháng 7 2018 lúc 8:15

\(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)

\(\Rightarrow\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2}{2018}+1+\frac{x+1}{2019}+1\)

\(\Rightarrow\frac{x+4+2016}{2016}+\frac{x+3+2017}{2017}=\frac{x+2+2018}{2018}+\frac{x+1+2019}{2019}\)

\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{2018}+\frac{x+2020}{2019}\)

\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{2018}-\frac{x+2020}{2019}=0\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\)

\(\Rightarrow x+2020=0\) vì \(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)

\(\Rightarrow x=-2020\)

Lê Thị Hà Linh
22 tháng 7 2018 lúc 8:13

= 100 - 100 = 0 làm ơn ks mình đi mình sẽ ks lại cho mà

Đào Trần Tuấn Anh
4 tháng 2 2019 lúc 17:03

uk

DoDi Na
Xem chi tiết
Vũ Minh Tuấn
17 tháng 8 2019 lúc 21:53

\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)

\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=0+2020\)

\(\Rightarrow x=2020\)

Vậy \(x=2020.\)

Chúc bạn học tốt!

cao mạnh lợi
Xem chi tiết
Tớ Đông Đặc ATSM
16 tháng 7 2018 lúc 16:20

<=>[ (x-1)/2019] -1 +[(x-2)/2018]-1 = [(x-3)/2017]-1 +[(x-4)/2016] -1

<=> (x-2020)/2019 +(x-2020)/2018 = (x-2020)/2017 + (x-2020)/2016

<=> (x-2020)( 1/2019+1/2018-1/2017-1/2016)= 0

=> x-2020= 0 => x= 2020

Trần Cao Vỹ Lượng
Xem chi tiết
꧁✰Hắ¢❤Ďươηɠ✰꧂
4 tháng 12 2018 lúc 13:45

\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)

\(\Rightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)

\(\Rightarrow\frac{x-1-2018}{2018}+\frac{x-2-2017}{2017}=\frac{x-3-2016}{2016}+\frac{x-4-2015}{2015}\)

\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)

\(\Rightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)

\(\Rightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

Mà \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\)

\(\Rightarrow x-2019=0\)

\(\Rightarrow x=2019\)