Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên Nguyễn Thủy
Xem chi tiết
Tiên Nguyễn Thủy
12 tháng 12 2016 lúc 18:12

sorry mấy bạn =x+y+z chứ ko phải =x+y=z :P 

Đinh Thị Ngọc Anh
Xem chi tiết
I Love Song Joong ki
Xem chi tiết
Nguyễn Hưng Phát
12 tháng 7 2016 lúc 9:33

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

Le Thi Khanh Huyen
12 tháng 7 2016 lúc 9:30

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

DORAPAN
Xem chi tiết
Minh Pool
22 tháng 9 2019 lúc 8:33

Nugget nghĩ pạn ghi lộn đề! Vì nếu x>0; y>0 -> x=1 và y=1 (giả thiết) thì làm sao x+y=1 được???

Thui Nugget về Kindergarten đây, tạm biệt.

DORAPAN
22 tháng 9 2019 lúc 8:48

Nếu x=1/2; y=1/2 thì sao ?

shitbo
22 tháng 9 2019 lúc 8:53

\(E=\frac{1-x^2-y^2}{x^2y^2}\left(quydonglen\right)\)

\(E=\frac{\left(x+y\right)^2-x^2-y^2}{x^2y^2}\left(x+y=1\right)\)

\(E=\frac{2xy}{x^2y^2}=\frac{2}{xy}\)

\(\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{2}{xy}\ge\frac{2}{\frac{1}{4}}=8\Rightarrow M_{min}=8.Dau:"="\Leftrightarrow x=y=\frac{1}{2}\)

Hà Thị Ánh Tuyết
Xem chi tiết
Upin & Ipin
12 tháng 2 2020 lúc 11:40

A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)

Ap dung tinh chat day ti so bang nhau ta co

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)

=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x

(1)  suy ra \(y+z+1=2x\)

<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)

thay vao (*) => y+z=0

tu (1) lai suy ra \(x+z+1=2y\)

<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)

vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)

Khách vãng lai đã xóa
Upin & Ipin
12 tháng 2 2020 lúc 11:42

b,     \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\) 

<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)

Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)

Khách vãng lai đã xóa
Trần Thị Mĩ Duyên
Xem chi tiết
Trần Anh Đức
Xem chi tiết
Lê Anh Tú
3 tháng 3 2018 lúc 18:42

Dùng tính chất tỉ lệ thức:

x+y+z = 0

\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\) 

Áp dụng tính chất tỉ lệ thức: 

\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)

=> x+y+z = \(\frac{1}{2}\)

+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)

+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\) 

+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)

I don
3 tháng 3 2018 lúc 18:58

TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)

\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)

\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)

\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)

VẬY X= 1/2; Y= 1/2 ; Z= -1/2

CHÚC BN HỌC TỐT!!!!!!

An Vy
Xem chi tiết
Incursion_03
20 tháng 7 2019 lúc 12:08

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

Incursion_03
20 tháng 7 2019 lúc 12:15

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

Incursion_03
20 tháng 7 2019 lúc 12:15

bài 3 min hay max ?

Nguyễn Ngọc Như Trang
Xem chi tiết

\(X^2-X+Y^2+Y+\frac{1}{2}=0\)

<=> \(\left(X^2-2X\frac{1}{2}+\frac{1}{4}\right)+\left(Y^2+2Y\frac{1}{2}+\frac{1}{4}\right)=0\)

<=>\(\left(X-\frac{1}{2}\right)^2+\left(Y+\frac{1}{2}\right)^2=0\)

Vì \(\left(X-\frac{1}{2}\right)^2\ge0\forall X\) ,   ,\(\left(Y+\frac{1}{2}\right)^2\ge0\forall Y\)

=> \(VT\ge0\forall X;Y\)

mà VT = 0

Từ 2 điều trên => \(\hept{\begin{cases}\left(X-\frac{1}{2}\right)^2=0\\\left(Y+\frac{1}{2}\right)^2=0\end{cases}}\)

<=>\(\hept{\begin{cases}X-\frac{1}{2}=0\\Y+\frac{1}{2}=0\end{cases}}\)

<=>\(\hept{\begin{cases}X=\frac{1}{2}\\Y=-\frac{1}{2}\end{cases}}\)

kết luận:

Khách vãng lai đã xóa