Tìm số nguyên n sao cho \(\frac{4n-9}{n+1}\)là phân số tối giản
Tìm số nguyên n để phân số 4n+9/n+1 là phân số tối giản
Bạn có thể trình bày cách giải cho mình đc ko ?
CMR phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản
Tìm n sao cho
a)\(\frac{n+3}{n-2}\)là số nguyên âm
b)\(\frac{n+7}{3n-1}\) là số nguyên
c) \(\frac{3n+2}{4n-5}\)là số tự nhiên
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
1.Tìm các số nguyên n sao cho 4n-9 chia hết cho 2n+1
2.Tìm số nguyên n sao cho 4n-9/n+1 là phân số tối giản
3.Cho phân số A=1+2+3+...+19/11+12+13+...+29
a.Rút gon phân số trên
b.Hãy xóa một số hạng ở tử và xóa một số hạng ở mẫu để được một phân số có giá trị bằng phân số đã cho
Các bạn nhớ ghi cả lời giải nha cảm ơn!
tìm các chữ số a và b sao cho a-b =4 và \(\overline{87ab}\)\(⋮\)9
b tìm các sô nguyên n sao cho 4n-9 chia hết cho 2n+1
c tìm các số nguyên n sao cho \(\frac{4n-9}{n+1}\) là phân sô tối giản
da chứng minh \(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+\(\frac{1}{2^4}\)+ ... + \(\frac{1}{2^n}\)<1
ai biết làm câu nào thì làm giúp mik nha
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
A = \(\frac{4n+1}{2n+3}\)
a)Tìm các số tự nhiên n để phân số A là phân số tối giản;
b)Tìm các số nguyên n để A là số nguyên.
Cho phân số \(M=\frac{4n+9}{2n+3}\)
a, Tìm \(n\inℤ\)để M có giá trị nguyên.
b, Tìm \(n\inℤ\)là phân số tối giản
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
cho phân số \(\frac{2n+3}{4n+8}\)(n thuộc Z ; n khác -2)
tìm số nguyên n để phân số có giá trị bằng \(\frac{1}{4}\)
chứng tỏ rằng \(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a,Tìm n để A nhận giá trị nguyên
b,Tìm n để A là phân số tối giản