\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{29.31}\)
Giải toán trên máy tính cầm tay.
a) Viết số 1,12(32) dưới dạng phân số tối giản.
b) Tính giá trị biểu thức \(S=\frac{1}{\sqrt{1.3}}+\frac{1}{\sqrt{3.5}}\frac{1}{\sqrt{5.7}}+...+\frac{1}{\sqrt{29.31}}\)(kết quả lấy đến 5 chữ số thập phân sau dấu phẩy)
Ta có : 1,12(32) = 1,12 + 0,0032
Mà 0,0032 = 32/9990
Nên : 1,12(32) = 28/25 + 32/9990 = 556/495
Nhập vào máy : Sích mak
công thức (2n - 1) ( 2n + 1) x chạy từ 1 đến 15 ok
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\), ta có:
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
mk đầu tiên đấy
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2003.2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}=\)
\(=\frac{2}{2.1.3}+\frac{2}{2.3.5}+\frac{2}{2.5.7}+....+\frac{2}{2.2003.2005}\)
\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\frac{2004}{2005}\)
\(=\frac{1002}{2005}\)
Chúc bạn học tốt nha!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(\frac{1}{2}.\frac{2004}{2005}\)
\(\frac{2004}{2.2005}=\frac{1002}{2005}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
Đặt tên bthuc là A
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=1-\frac{1}{21}=\frac{20}{21}\)
=>\(A=\frac{20}{21}:2=\frac{10}{21}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)
\(=\frac{9}{19}\)
sr nhìn nhầm đề bài
Tính
a)S1=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b)S2=\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
c)S3=\(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{1}{99.101}\)
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
k cho mình nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
a,tính \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{19.21}\)
b,CMR A\(=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{(2n-1).(2n+1)}\le\frac{1}{2}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2018.2019}\)
=1 - 1/3 +1/3 -1/5 +1/5 -1/7 +.........+1/2018 - 1/2019
=1 - 1/2019
=2018/2019
K MK NHA. CHÚC BẠN HỌC GIỎI
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{2019}\)
\(=\frac{2}{2}\cdot\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.....+\frac{1}{2018\cdot2019}\right)\)
Tính : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{19.21}\)
gọi biểu thức là A
ta có :
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...\frac{1}{19.21}\)
=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}...\frac{2}{19.21}\)
2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{21}\)
2A = 1 - \(\frac{1}{21}\)
2A = \(\frac{20}{21}\)
A = \(\frac{20}{21}:2=\frac{10}{21}\)