cho tam giác ABC có AB=3cm, góc A=75 độ, góc C=60 độ. Trên nửa mặt phẳng bờ BC có chứa A vẽ tia Bx sao cho góc CBx=15 độ. Từ A vẽ một đường thẳng vuông góc với AB, cắt Bx tại D.
a) chứng minh DC vuông góc BC.
b) tính tổng BC2+CD2
tam giác ABC có AB=1cm;góc A=75 độ ; góc B =60 độ. Trên nửa mặt phẳng bờ BC có chứa A vẽ tia Bx sao cho CBx= 15 độ. Từ A vẽ một đường thẳng vuông góc với AB, cắt Bx tại D
a, chứng minh DC vuông góc BC. tính BC^2+CD^2
∆DAB vuông cân vì có ^DAB=90°; ^DBA=45° =>AD=AB=1.
Lấy điểm E trên BC sao cho ^EAB=60°. =>∆EAB đều vì có ^EAB=^ABE=60°. =>AE=AB=1. ^DAC=^DAB - ^CAB=90°-75°=15°. ^CAE=^CAB-^EAB=75°-60°=15°. => ∆DAC=∆EAC (g.c.g).
=>^DCA=^ECA.
^ECA =180°- (^CAB+^ABC) =180°- (75°+60°)=45°.
=>^DCA=45°. => ^DCE=^DCA-^ACE=45°+45°=90°.
b) ∆DAB vuông tại A => DB²=AD²+AB²=1²+1²=2.
∆DCB vuông tại C => BC²+CD²=DB²=2.
∆DAB vuông cân vì có ^DAB=90°; ^DBA=45° =>AD=AB=1.
Lấy điểm E trên BC sao cho ^EAB=60°. =>∆EAB đều vì có ^EAB=^ABE=60°. =>AE=AB=1. ^DAC=^DAB - ^CAB=90°-75°=15°. ^CAE=^CAB-^EAB=75°-60°=15°. => ∆DAC=∆EAC (g.c.g).
=>^DCA=^ECA.
^ECA =180°- (^CAB+^ABC) =180°- (75°+60°)=45°.
=>^DCA=45°. => ^DCE=^DCA-^ACE=45°+45°=90°.
b) ∆DAB vuông tại A => DB²=AD²+AB²=1²+1²=2.
∆DCB vuông tại C => BC²+CD²=DB²=2.
tam giác ABC có AB=1cm;góc A=75 độ ; góc B =60 độ. Trên nửa mặt phẳng bờ BC có chứa A vẽ tia Bx sao cho CBx= 15 độ. Từ A vẽ một đường thẳng vuông góc với AB, cắt Bx tại D
a, chứng minh DC vuông góc BC.
b.tính BC^2+CD^2
có cạnh AB bằng 2 cm góc A bằng 75 độ góc B bằng 60 độ trên nửa mặt phẳng bờ BC chứa điểm A Vẽ tia bx sao cho cbx bằng 15 độ từ A kẻ đường thẳng vuông góc AB cắt BC tại D a chứng minh rằng bc vuông góc với BC b tính BC bình cộng c bình bằng bao nhiêucó cạnh AB bằng 2 cm góc A bằng 75 độ góc B bằng 60 độ trên nửa mặt phẳng bờ BC chứa điểm A Vẽ tia bx sao cho cbx bằng 15 độ từ A kẻ đường thẳng vuông góc AB cắt BC tại D a chứng minh rằng bc vuông góc với BC b tính BC bình cộng c bình bằng bao nhiêu
Cho tam giác ABC vuông cân tại A,D là điểm bất kì trên cạnh AB.Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Bx sao cho góc ABx=135 độ. Đường thẳng vuông góc với DC vẽ từ D cắt tia Bx tại E.Chứng minh rằng tam giác DEC vuông cân
trên tia AC lấy điểm F sao cho À = AD
Nối D với C ; D với F
\(\Rightarrow\Delta ADF\)vuông cân tại A
\(\Rightarrow\widehat{ADF}=\widehat{AFD}=45^o\)
Mà \(\widehat{AFD}+\widehat{DFC}=180^o\)( 2 góc kề bù )
hay \(\widehat{DFC}=180^o-45^o=135^o\)
Xét \(\Delta ADC\)vuông tại A có :
\(\widehat{ADC}+\widehat{ACD}=90^o\)( 1 )
vì \(\widehat{ADC}+\widehat{CDE}+\widehat{EDB}=180^o\)
hay \(\widehat{ADC}+90^o+\widehat{EDB}=180^o\)
\(\Rightarrow\widehat{ADC}+\widehat{EDB}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ACD}=\widehat{EDB}\)
vì \(\Delta ABC\)vuông cân \(\Rightarrow AB=AC\)mà AB = AF
\(\Rightarrow BD=FC\)
Xét \(\Delta BDE\)và \(\Delta CFO\)có :
\(\widehat{ACD}=\widehat{EDB}\)( cmt )
BD = FC ( cmt )
\(\widehat{DFC}=\widehat{DBE}\)( = 135 độ )
Suy ra : \(\Delta BDE\)= \(\Delta CFO\)( g.c.g )
\(\Rightarrow\)DC = DE ( 2 cạnh tương ứng )
mà \(\widehat{CDE}\)= \(90^o\)
Suy ra : \(\Delta DEC\)là tam giác vuông cân
Bài 6. Cho tam giác ABC vuông cân tại A, D là điểm bất kỳ trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Bx sao cho góc ABx =135 độ . Đường thẳng vuông góc với DC vẽ từ D cắt tia Bx tại E. CMR: tam giác DEC vuông cân
Câu hỏi của son tung - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo!
Cho tam giác ABC vuông tại A. Trên nửa mặt phẳng không chứa điểm C bờ là đường thẳng AB, vẽ tia BX sao cho ABx bằng 35 độ. Trên nửa mặt phẳng bờ là đường thẳng BC, vẽ tia Cy sao cho ACy bằng 55 độ. Chứng minh: Bx vuông góc với Cy
ĐỀ BÀI:Cho tam giác ABC có AB =3 cm.Góc A=75 độ,góc C=60 độ.Trên nửa mặt phẳng bờ chứa BC có chứa A vẽ tia Bx sao cho góc CBx =15 độ.Từ A vẽ một đường thẳng vuông góc với AB,cắt Bx tại D.
a) c/m BC vuông góc với Bx
b)Tính tổng BC2+CD2
HELP GẤP HỘ EM NHA MỌI NGƯỜI !!!
Cho tam giác ABC vuông cân tại A. D là điểm bất kì trên cạnh AB. Trên nữa mặt phẳng bờ AB có chứa C vẽ tia Bx sao cho ABx = 135 độ. Đường thẳng vuông góc với DC vẽ từ D cắt Bx tại E. Chứng minh rằng tam giác DEC vuông cân.
Tự vẽ hình nha bạn; chú thích ở dưới nha bạn
Trên AC lấy điểm K sao cho AD=AK
=>t/gADK vuông cân tại A
=>ADK^=AKD^=45*
Mà DKA^+DKC^=180*
Hay 45*+DKC^=180*
=>DKC^=135*
Ta có:EDC^+ADC^+EDB^=180*
Hay 90*+ADC^+EDB^=180*
=>ADC^+EDB^=90*(1)
Xét t/g vuông ADC có:ADC^+DCA^=90*(phụ nhau)(2)
Từ (1) và (2)=>ADC^+EDB^=ADC^+DCA^(=90*)
=>EDB^=DCA^
Vì AD=AK,AB=AC(vì t/g ABC cân tại A)
=>AB-AD=AC-AK
=>BD=KC
Hay EDB^=DCK^
Xét t/g EBD và t/g DKC có:
EDB^=DCK^(cmt)
BD=KC(cmt)
EBD^=DKC^(=135*)
=>t/g EBD=t/g DKC(g.c.g)
=>DE=DC(2 cạnh tương ứng)
Vì t/g DEC vuông tại D(gt) và DE=DC
=>t/g DEC vuông cân tại D(đpcm)
ps:t/g là tam giác,* là độ,^ là góc
Lấy F thuộc AC sao cho AD = AF. Khi đó tam giác ADF vuông cân ở A ==> DFAˆ=450→DFCˆ=1350
Ta có:
BDEˆ=1800−EDCˆ−ADCˆ=1800−900−ADCˆ=900−ADCˆ
ACDˆ=900−ADCˆ (vì tam giác ADC vuông ở A)
Suy ra ACDˆ=BDEˆ
Mặt khác:
BD = AB - AD
CF = AC - AF
AB = AC, AD = AF
Nên BD = CF.
Xét tam giác BDE và tam giác FCD:
BD = FC
BDEˆ=FCDˆ
EBDˆ=DFCˆ(=1350)
Suy ra ΔBDE = ΔFCD (g.c.g) ==> DE = DC
Mà tam giác EDC vuông ở D.
Suy ra tam giác EDC vuông cân ở D.
Cho tam giác ABC vuông cân tại A D là điểm bất kì trên canh AB trên nửa mặt phẳng bờ AB có chứa C ẽ tia Bx sao cho góc ABx = 135 độ Đường thẳng vuông góc với DC tại D cắt Bx ở E. Chứng minh tam giác DEC vuông cân
Câu hỏi của son tung - Toán lớp 7 - Học toán với OnlineMath